		Question Pap	oer Code: 93703					
B.E. / B.Tech. DEGREE EXAMINATION, DEC 2020								
	Third Semester							
		Mechanic	al Engineering					
	19	OUME 303 – ENGINEE	RING THERMODYNAN	MICS				
		(Regul	lation 2019)					
Dur	ration: 1:15 hour	` `	,	Maximum: (30Marks			
		PART A - ($6 \times 1 = 6 \text{ Marks}$					
		(Answer any six of	the following questions)					
1.		The amount of heat required to rise the temperature of the unit mass of the gas CO1- R through gas 10Cat constant volume, is called						
	(a) Specific heat at constant volume		(b) Specific heat at constant pressure					
	(c) Kilo calories		(d) None of the al	bove				
2. The general law of expansion or compression is PVn = C. The processes is said to be hyperbolic, if n is equal to				cesses is said	CO1- U			
	(a) 0	(b) 1	(c) Y	(d) X				
3.	A process in which	ch Enthalpy remains cor	nstant is.		CO2-R			
	(a) Isothermal Process		(b) Hyperbolic process					
	(c) Adiabatic pro	cess	(d) Throttling pro	ocess				
4.	Kelvin-Plank's L	aw deals with			CO2-R			
			vation of heat in to work vation of potential energy into work					
5.	Heat rate is given	by (in kJ/kWh)			CO3- U			
	(a) cycle efficiency		(b) 600 / cycle efficiency					
	(c) cycle efficiency / 3600		(d)) cycle efficiency * 3600					
6.	Dryness fraction of the wet steam is given b		n by		CO3-R			
	(a) mg / mf	(b) $mf / mf + mg$	(c) $mg / mf + mg$	(d) mg / m	f			

Reg. No.:

7.	The first TdS equation is		C	CO4- U	
	(a) TdS=Cv*dT + T(∂ T/ ∂ p)dV	(b) TdS=Cv*dT – $T(\partial p/\partial x)$	T)dV		
	(c) TdS=Cv*dT + T($\partial p/\partial T$)d	(d) TdS=Cv*dT – $T(\partial T/\partial T)$	∂p)dV		
8.	The energy equation is given by			CO4- R	
	(a) $(\partial U/\partial V) = T*(\partial p/\partial T) + p$	(b) $(\partial U/\partial V) = T*(\partial p/\partial T)$	- p		
	(c) $(\partial U/\partial V) = -T*(\partial p/\partial T) - p$	(d) $(\partial U/\partial V) = p - T*(\partial p \partial V)$	⁄∂T)		
9.	Heating and humidification is done in				
	(a) Summer air conditioning (b) Winter air conditioning				
	(c) Both (a) & (b)	(d) All of the above			
10.	The wet bulb temperature is the temperature recorded by moistened bulb. CO5- U				
	(a) Lowest	(b) Highest			
	(c) Atmospheric	(d) None of the above			
	PART – B (3	x 8= 24 Marks)			
	(Answer any three of	the following questions)			
11.	steam, at inlet to certain nozzle the enthalpy the velocity is 60 m/s at discharge end en nozzle is horizontal and there is negligible he (i) Find the velocity at exist from nozzle (ii) If inlet area is 0.1 m ² and specific volum Find the mass flow rate (iii) If the specific volume at exit is 0.498 m	of fluid is 3000KJ/Kg and thalpy is 2762 KJ/Kg.The at loss from it. ne at inlet is 0.187 m ³ /Kg.	CO1- App	(8)	
12	nozzle Evalain the weaking minerals of Compet eval	a and damiya the Efficiency	CO2 II	(9)	
12.	Explain the working principle of Carnot cycl of carnot cycle in terms of temperature from	•	CO2- U	(8)	
13.			CO3- U	(8)	
	when the temperature rises from solid phase t	o superheated phase			
14.	1	ain their importance in	CO4-App	(8)	
15.	thermodynamics. Explain the various psychometric process wit	h neat sketches.	CO5- U	(8)	
	r r r r r r r r r r r r r r r r r r r		-	(-)	