Reg. No. :		g. No. :								
Question Paper Code: 56701										
B.E./B.Tech. DEGREE EXAMINATION, DEC 2020										
Sixth Semester										
Mechanical Engineering										
15UME601-DESIGN OF TRANSMISSION SYSTEMS										
(Regulation 2015)										
(Design data book permitted)										
Duration: 1.15 hrs					Maximum: 30 Marks					
PART A - $(6 \times 1 = 6 \text{ Marks})$										
(Answer any six of the following questions)										
1.	Which one of the following is a positive drive?					CO1-R				
	(a) Crossed flat belt drive	(b) Rope	e drive	(c)	V-be	elt drive	(d) Ch	ain d	lrive
2.	The wire rope make contact	t at							(CO1-R
(a) Bottom of the grooved pulley				(b) Side of the grooved pulley						
(c) Side and bottom of the grooved pulley				(d) Anywhere in the grooved pulley						
3.	3. The size of gear is usually specified by					(CO2-R			
	(a) Pressure angle	(b) Pitch	n circle	diamet	ter					
	(c) Circular pitch	(d) dian	netrical	pitch						

if helix angle is 25°?
(a) 4.95 mm

4.

- (b) 500 mm
- (c) 5.43 mm
- (d) 6.62 mm

CO2-R

- 5. When bevel gears having equal teeth and equal pitch angles connect two CO3-R shafts whose axes intersect at right angles the they are known as
 - (a) Angular bevel gear
- (b) Crown bevel gear
- (c) Internal bevel gear
- (d) Mitre gear

A helical gear has normal module of 6 mm. What is the transverse module

6.	What is the shor a worm gear pai			rm gear and axes of the?	for (CO3-R	
	(a) 50 mm		(b) 200 mm	(c) 320 mm	(d)) 360 mn	n
7.	In the two stage	gear box ho	ow may shaft v	will be there		(CO4-R
	(a) 3	(b) 2	(c) 1	(d) 4		
8.	Name the series	in which sp	peeds of multi	speed gear box are a	rranged	(CO4-R
	(a) Arithmetic progression (b) Geometric progression						
	(c) Logarithmic progression (d) Harmonic progression						
9.	•	the number	of discs on the	e number of discs or he driven shaft, then		•	CO5-R
	(a) $n_1 + n_2$	(b) n ₁	$+ n_2 - 1$	(c) $n_1 + n_2 + 1$	(d) No	ne of the	ese
10.	The cam follower extensively used in air-craft engines is)5-R
	(a) Knife edge f	ollower		(b) Flat faced follow	ver		
	(c) Spherical fac	ed follower		(d) Roller follower			
		PA	$RT - B (3 \times 8)$	= 24 Marks)			
	(Answer an	y three of the	following questions)		
11.	rpm by mean	A compressor receives power from a motor rated at 30 kW at 22 CO1-App pm by means of V belts. The pulley diameters are 300 mm and 750 mm. Centre distance is 1.4 m. Design the belt drive.					(8)
12.	electric motor both the gea	to an air cor r and pinio	ompressor run on is made v	V at 1440 rpm from the same of	sume	CO2-App	(8)
13.	Design a bevel gear drive to transmit 10 kW at 1440 rpm. Take CO3-C Gear ratio as 3, material for pinion and gear – C45 steel and expected life as 10,000 hrs						(8)
14.	twelve output speed 1440 r structural diag	speeds ran pm Choose gram and ki	ging from 160 standard spec nematic arrang	nilling machine to pro 7 rpm to 2000 rpm. 8 ratio and construction 9 gement. Show the nu	Input et the	CO4-C	(8)

15. An automotive single plate clutch consists of two pairs of contacting surfaces. The inner and outer radii of friction plate are 120mm and 250mm respectively. The coefficient of friction is 0.25 and the total axial force is 15kN. Calculate the power transmitting capacity of the clutch plate at 500rpm using (i) uniform pressure theory (ii) uniform wear theory.