Reg. No. :										
------------	--	--	--	--	--	--	--	--	--	--

Question Paper Code: 53704

B.E. / B.Tech. DEGREE EXAMINATION, DEC 2020

Third Semester

Mechanical Engineering

15UME304 - FLUID MECHANICS AND MACHINERY

(Regulation 2015)

Duration: 1.15 hrs

Maximum: 30 Marks

PART A - $(6 \times 1 = 6 \text{ Marks})$

(Answer any six of the following questions)

1.	The property of a liquid which offers resistance to the movement of CC one layer of liquid over another adjacent layer of liquid, is called						
	(a) Surface tension	(b) Compressibility	(c) Capillarity	(d) Viscosity			
2.	A flow in which the o is called	quantity of liquid flow	ring per second is constant,	CO1- R			
	(a) Steady flow	(b) Streamline flow	(c) Turbulent flow	(d) Unsteady flow			
3.	The hydraulic mean depth for a circular pipe of diameter(d) is CO2- R						
	(a) d/6	(b) d/4	(c) d/2	(d) d			
4.	The total energy line lies over the hydraulic gradient line by an amount CO2 equal to the						
	(a) Pressure head		(b) Velocity head				
	(c) Pressure head + ve	elocity head	(d) Pressure head-velocity head				
5.	The square root of the inertia force of a flowing fluid to the elastic CO3 force called						
	(a) Mach number		(b) Reynolds number				
	(c) Weber number		(d) Froude number				
6.	The dimension of velo	ocity is		CO3- R			
	(a) LT^{-1}	(b) T^{-1}	(c) LT^{-2}	(d) $L^{3}T^{-1}$			

7.	A pelton wheel is	(CO4- R				
	(a) Tangential flow impulse turbine	(b) Inward flow impulse turbine					
	(c) Outward flow impulse turbine	(d) Inward flow reaction turbine					
8.	Multi-stage centrifugal pumps are used to	(CO4- R				
	(a) Give high discharge	(b) Produce high heads					
	(c) Pump viscous fluids	(d) All of the above					
9.	If the net positive suction head requirem satisfied, then	ent for the pump is not	CO5- R				
	(a) No flow will take place	(b) Cavitation will be formed					
	(c) Efficiency will be low	(d) Excessive power will be consumed					
10.	Which of the following pump is preferred irrigation applications?	ed for flood control and	CO5- R				
	(a) Centrifugal pump	(b) Axial flow pump					
	(c) Mixed flow pump	(d) Reciprocating pump					
	PART – B (3	x 8= 24 Marks)					
	(Answer any three of the following questions)						
11.	Determine the viscous drag torque and power a collar bearing half 0.2 m ID and 0.3 m OD of 1 mm and a viscosity of 30centi-poise if it	with an oil film thickness	(8)				
12.	Calculate the discharge through a pipe of did difference of pressure head between the two apart is 4 m of water. Take value of $f = 0.009$ 2gd.	ends of pipe 500 m	(8)				
13.	Find an expression for the drag force on sm moving with uniform velocity v in fluid viscosity μ .	*	(8)				
14.	A francis turbine has an inlet diameter of 2 m 1.2 m. The breath of the blades is constant a at a speed of 250 rpm with a discharge of 8 radial at the inlet and the discharge is radia Calculate the angle of guide vane at the inlet	t 0.2m. The runner rotates m^3 per sec. The vanes are lly outwards at the outlet.	(8)				

15. A double acting reciprocating pump, running at 50 rpm is discharging CO5- App (8) 900 liters of water per minute. The pump has a stroke of 400 mm. The diameter of piston is 250 mm. The delivery and suction heads are 25 m and 4 m respectively. Find the slip of the pump and power required to drive the pump.