Reg. No. :										
------------	--	--	--	--	--	--	--	--	--	--

Question Paper Code: 44603

B.E. / B.Tech. DEGREE EXAMINATION, DEC 2020

Fourth Semester

Instrumentation and Control Engineering

14UIC403 - LINEAR CONTROL SYSTEMS

(Regulation 2014)

Duration: One hour

Maximum: 30 Marks

PART A - $(6 \times 1 = 6 \text{ Marks})$

(Answer any six of the following questions)

1. The transfer function for the feedback control system shown in figure below is

- (a) $G_1G_2/(1+H_1G_1G_2G_3)$ (b) $G_2G_3/G_1(1+H_1G_2G_3)$ (c) $G_2G_3/(1+H_1G_1G_2G_3)$ (d) $G_2G_3/(G_1(1+H_1G_2G_3))$
- 2. A car is running at a constant speed of 50 km/h, which of the following is the feedback element for the driver?

(a) Clutch	(b) Eyes
(c) Needle of the speedometer	(d) Steering wheel

- 3. The damping ratio of a system having the characteristic equation $S^2+2S+8=0$ is
 - (a) 0.353 (b) 0.330 (c) 0.300 (d) 0.250

4. For a second order system settling time is Ts = 7 s and peak time is Tp = 3 s. The locations of poles are

(a)- $0.97 \pm j0.69$	(b)-0.69 $\pm j0.97$
(c)-1.047 \pm j0.571	(d) $-0.571 \pm j1.047$

5. A system with gain margin close to unity or a phase margin close to zero is

(a) Highly stable	(b) Oscillatory
(c) Relatively stable	(d) Unstable

66. For the transfer function, the phase cross-over frequency is

		G(s)H(s) =	$\frac{1}{s(s+1)(s+0.5)}$	
	(a) 0.5 rad/sec		(b) 0.707 rad/s	sec
	(c) 1.732 rad/sec		(d) 2 rad/sec	
7.	The equation $2s^4 + s^3$ s-plane.	$+3s^{2}+5s+$	10 = 0 has	roots in the left half of
	(a) one	(b) two	(c) three	(d) four
8.	If the Nyquist plot of encloses the $(-1 + j0)$ p	the loop transform the $G(s)$	er function $G(s)$ $H(s)$ H(s) plane, the gain r	of a closed-loop system of the system is
	(a) zero		(b) greater that	n zero

(a) zero	(b) greater than zero
(c) less than zero	(d) infinity

9. The transfer function of $\frac{1+0.5S}{1+S}$ represents a (a)Lag network (b)Lead network

- (c)lag Lag–lead network (d) Proportional controller
- 10. Introduction of the lag compensator shifts the gain cross over frequency to the ______ frequency region of Bode plot

(a) Low

PART - B (3 x 8= 24 Marks)

(Answer any three of the following questions)

11. Write the differential equations governing the mechanical system shown in figure 1 below and develop the transfer function. (8)

- 12. A unity feedback control system is characterized by the following open loop transfer function G(s) = (0.4S+1) / S(S+0.6). Determine its transient response for unit step input and sketch the response. Infer the maximum overshoot and the corresponding peak time. (8)
- 13. Sketch the polar plot of $G(s) = \frac{1}{[s(1+0.5s)(1+0.02s)]}$ and determine the phase cross over frequency. (8)
- 14. Sketch the root locus of the system whose open loop transfer function is $G(s) = \frac{K}{s(s+2)(s+4)}$ Interpret the value of K so that the damping ratio of the closed loop system is 0.5. (8)
- 15. A unity feedback system has an open loop transfer function $G(s) = \frac{K}{s(1+2s)}$. Design a suitable lag compensator so that phase margin is 40° and the steady state error for ramp input is less than or equal to 0.2. (8)