Reg. No. :	
------------	--

Question Paper Code: 45603

B.E. / B.Tech. DEGREE EXAMINATION, DEC 2020

Fifth Semester

Instrumentation and Control Engineering

14UIC503 - ADVANCED CONTROL SYSTEM

(Regulation 2014)

Duration: One hour

Maximum: 30 Marks

PART A - $(6 \times 1 = 6 \text{ Marks})$

(Answer any six of the following questions)

1. The variable which determine the state of a dynamical system, are called

(a) State-analysis	(b) State-vector

(c) State-variables (d) State-space

2. In a system, all initial states are controllable. The system is said to be

(a) Partially controllable	(b) Uncontrollable
(c) Infinity	(d) Completely controllable

3. The coordinate plane with the state variables x_1 and x_2 as two axes is called

(a) phase trajectory (b) phase portrait (c) phase plane (d) singular point

4. Non linear systems often have______ steady-state solutions.

(a) Single (b) Multiple (c) One or Two (d) Zero

5. In many cases the system presents a nonlinear phenomenon which is fully characterized by its _____ characteristics.

(a) Dynamic (b) First order (c) Static (d) Second order

6. A locus passing through the points of same slope in phase plane is called

(a) limit cycles (b) phase portrait (c) phase plane (d) isoclines

- 7. The system describe by $\dot{x(t)} = F(x(t))$, a state $x_e(t)$ where $F(x_e(t)) = 0$; for all t is called as a/ an ______ of the system.
 - (a) Un stable(b) Stable(c) Equilibrium state(d) Un stable equilibrium state
- 8. In the following equations, which one is named as negative definite scalar function based on Liapunov's stability criterion?

(a)
$$\frac{dV(x)}{dt}$$
 (b) $\frac{dV^2(x)}{dt^3}$ (c) $dV(x)$ (d) $\frac{dV}{dt}$

9. A control system is optimum when the selected performance index is

(a) Maximized	(b) Controlled
(c) Non controlled	(d) Minimized

10. The optimal control theory is applicable for

(a) Multivariable system			(b) SISO
(c) Autonomous system			(d) None of these
	D (2	0	$\Delta A M = 1$

PART - B (3 x 8= 24 Marks)

(Answer any three of the following questions)

11. Construct a state model for a system characterized by the differential equation

$$\frac{d^3 y}{dt^3} + 6 \frac{d^2 y}{dt^2} + 11 \frac{dy}{dt} + 6y + u = 0$$
(8)

- 12. Construct a phase trajectory by delta method for a non linear system represented by the differential equation, $\ddot{x} + 4\dot{x} + 4x = 0$. Choose the initial condition as x(0) = 1.0 and $\dot{x}(0) = 0$. (8)
- 13. A nonlinear electronic device produces an output that is the cube of its input (i.e. $y = x^3$). Derive the describing function of the device. (8)
- 14. Using the Lyapunov equation, examine the stability range for the gain K of the system shown in figure-1. (8)

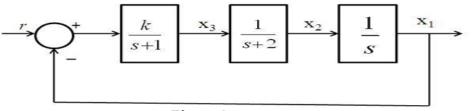


Figure 1

- 15. Consider the second order system as shown in figure 2. Calculate the value of damping ratio ξ , so that the system is subjected to a unit step input *r*, the performance index $J = \int_{0}^{\infty} (e^2 + e^2) dt$ is minimized. The system is assumed to be
 - at rest initially. (8) $\xrightarrow{r + e} \underbrace{\frac{1}{s(s+2\xi)}} \xrightarrow{y}$

Figure 2