Reg. No.:					

Question Paper Code: 35063

B.E. / B.Tech. DEGREE EXAMINATION, DEC 2020

Fifth Semester

Instrumentation and Control Engineering

01UIC503 – ADVANCED CONTROL SYSTEM

	(Regulation 2013)						
D	Duration: One hour	Maximum: 30 Marks					
	PART A - $(6 \times 1 = 6 \text{ Marks})$						
	(Answer any six of the following que	stions)					
1.	The variable which determine the state of a dynamical system, are called						
	(a) State-analysis (b) State-vector	(b) State-vector					
	(c) State-variables (d) State-space						
2.	In a system, all initial states are controllable. The system is said to be						
	(a) Partially controllable (b) Uncontrollable	(b) Uncontrollable					
	(c) Infinity (d) Completely c	ontrollable					
3.	The coordinate plane with the state variables x_1 and x_2 as two axes is called						
	(a) phase trajectory (b) phase portrait (c) phase	plane (d) singular point					
4.	4. Non linear systems often have steady-state	solutions.					
	(a) Single (b) Multiple (c) One or Two	(d) Zero					
5.	5. In many cases the system presents a nonlinear phenomenous by its characteristics.	on which is fully characterized					
	(a) Dynamic (b) First order (c) Static	(d) Second order					
6	6 A locus passing through the points of same slope in phase i	plane is called					

(a) limit cycles (b) phase portrait (c) phase plane (d) isoclines

7.	The system describe by $\dot{x(t)} = F(x(t))$ a/an of the system.	t)), a state $x_e(t)$ where $F(x_e(t)) = 0$; for all t is called as
	(a) Un stable (c) Equilibrium state	(b) Stable(d) Un stable equilibrium state
8.	In the following equations, which based on Liapunov's stability crite	one is named as negative – definite scalar function erion?
	(a) $\frac{dV(x)}{dt}$ (b) $\frac{dV^2(x)}{dt^3}$	$\frac{dx}{dt} \qquad (c) dV(x) \qquad (d) \frac{dV}{dt}$
9.	A control system is optimum when	n the selected performance index is
	(a) Maximized(c) Non controlled	(b) Controlled(d) Minimized
10.	. The optimal control theory is appl	icable for
	(a) Multivariable system (c) Autonomous system	(b) SISO (d) None of these $S - B (3 \times 8 = 24 \text{ Marks})$
	-	hree of the following questions)
11.	Obtain the three canonical sta as $\frac{Y(s)}{U(s)} = \frac{10}{s^3 + 4s^2 + 2s + 1}$	te model of the system whose transfer function is given (8)
12.	. Draw and explain the construc	etion of phase trajectories by using delta method. (8)
13.	. The response of a system is nonlinear.	$y = ax + b\frac{dx}{dt}$ test whether the system is linear or (8)
14.		namics of the system represented by rmulate the liapunov function to test the asymptotic (8)
15.	•	is described by the differential equation desired to find the control law that minimizes the (8)