Reg. No. :					
110					

Question Paper Code: 93305

B.E. / B.Tech. DEGREE EXAMINATION, DEC 2020

Third Semester

Electrical and Electronics Engineering

19UEE305 – FIELD THEORY

		190EE303 - FIELD	THEORI		
		(Regulation 20	19)		
Dur	ation: One hour		Ma	ximum: 30M	Iarks
		PART A - $(6 \times 1) = (6 \times 1)$	6 Marks)		
	(1	Answer any six of the follo	owing questions)		
1.	Compute the divergence	e of the vector $xi + yj + zk$.			CO1- R
2.	(a) 1 A vector is said to be so	(b) 2 elenoidal when its	(c) 3	(d) 0	CO1- R
3.	• •	(b) Divergence is unity 2C and -1C separated by a		(d) Curl is	unity CO2-R
	(a) 18×10^6	(c) 18×10^{-6}	(d) -18×10^{-6}		
4.	Energy stored in 2000m	F capacitor charged to a po	otential difference of 10)V is?	CO2-R
5.	(a) 100J Calculate the magnetic radius 2m with current 8	(b) 200J field at a point on the ce 8A.	(c) 300J entre of the circular co	(d) 400J onductor of	CO3- U
6.	(a) 1 The point form of Ampo	(b) 2	(c) 3	(d) 4	CO3- R
	(a) $Curl(B) = I$	(b) $Curl(D) = J$	(c) $Curl(V) = I$	(d) Curl(H	J = J
7.	Magnetic dipole momen (a) Permittivity	t per unit volume is called (b) Magnetization (c)	as Permeability (d) Ma	gnetic flux d	CO3- R ensity
8.	The relation between th	e direction of force and the	direction of magnetic	field is	CO4- R
	(a) Same direction	(b) Opposite direction	(c) Perpendicular	(d) Unrela	ted
9.	Unit of Poynting Vector	r is			CO4- R
	(a) Watt	(b) Watt/s	(c) Watt/m	(d) Watt/n	n^2
10.	In a certain medium=10	cos (108t-3y) ax V/m. Wha	at type of medium is it?		CO4- R
	(a) Free space		(b) Lossy dielectric	2	
	(c) Lossless dielectric		(d) Perfect conduct	ior	

PART - B (3 x 8= 24 Marks)

(Answer any three of the following questions)

- 11. Determine the curl and divergence of the given vector field P = $x^2yz \ a_x + xz \ a_z$ (8)
- 12. Consider a charged circular ring of radius 'r' is placed in xy plane with CO2-App (8) centre at origin carrying a charge uniformly along its circumference. The charge density is ρ₁ c/m. Calculate electric field intensity for the ring.
- 13. Apply Coulomb's law to determine the electric field intensity due to infinite CO2- App (8) line of uniform charged wire.
- 14. At an interface separating two different magnetic materials show that the CO3-App (8) tangential component of magnetic field intensity is continuous across the boundary, whereas the normal component of magnetic field intensity is discontinuous at the boundary.
- 15. Consider a solenoid of N turns. Let current flowing through the solenoid is I CO4- App (8) ampere. Length of solenoid is L. Cross section area is A. Calculate inductance of the solenoid also magnetic field intensity inside the solenoid.