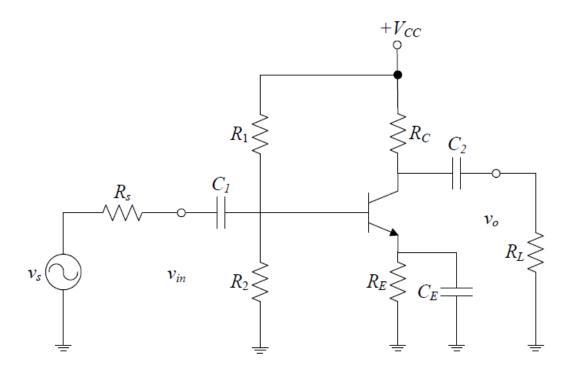
		Reg. No. :		
Question Paper Code: 93304				
B.E. / B.Tech. DEGREE EXAMINATION, DEC 2020				
Third Semester				
Electrical and Electronics Engineering				
19UEE304 – ANALOG ELECTRONICS				
(Regulation 2019)				
Dura	tion: One hour		Ma	aximum: 30Marks
PART A - $(6 \times 1 = 6 \text{ Marks})$				
(Answer any six of the following questions)				
1.	The number of pn june	ctions in a BJT is/are		CO1- R
	(a) 1	(b) 2	(c) 3	(d) 4
2.	Which of the followin	g is true for the saturation	on region?	CO1- R
2	(a) $VDG \leq Vtp $	(b) $VSD \leq VOV $		(d) $VSD < VOV $
3.	In CE configuration, if the voltage drop across $5k\Omega$ resistor connected in the collector circuit is 5V. Find the value of IB when β =50. CO2-R			
	(a) 0.01mA	(b) 0.25mA	(c) 0.03mA	(d) 0.02mA
4.	The correct expression	n relating the emitter cur	rrent Ie to the collector curr	ent Ic is CO2-R
	(a) Ie = α Ic	(b) $Ic = \alpha Ic$	(c) Ie = β Ic	(d) $Ic = \beta Ic$
5.	The expression for the	e differentiator time cons	stant is	CO4- U
	(a) CR	(b) 1/CR	(c) R /C	(d) C/R
6.	What are the units of s			CO4- R
7.	-		(c) It is a ratio, no units C phase shift oscillator ha ely.	
	(a) 1230 Hz	(b) 204 Hz	(c) 502Hz	(d) 673 Hz
8.	What is Barkhausen c	riterion for oscillation?		CO4- R
	(a) $A\beta > 1$	(b) Aß < 1	(c) $A\beta = 1$	(d) $A\beta \neq 1$
9.	A monostable multivibrator has $R = 120k\Omega$ and the time delay $T = 1000ms$, CO5- U calculate the value of C?			
	(a) 0.9µF	(b) 1.32 μF	(c) 7.5 µF	(d) 2.49µF

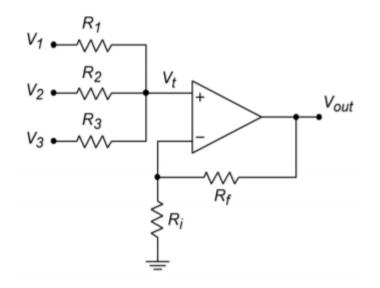

10. Free running frequency of Astable multivibrator?

(a) $f=1.45/(R_A+2R_B)C$ (b) $f=1.45(R_A+2R_B)C$ (c) $f=1.45C/(R_A+2R_B)$ (d) $f=1.45 R_A/(R_A+R_B)$

PART - B (3 x 8= 24 Marks)

(Answer any three of the following questions)

- 11. Explain drain and transfer characteristic of JFET.
- 12. Consider the common-emitter BJT amplifier circuit shown in Figure. CO2- App (8) Assume VCC = 15 V, β = 150, VBE = 0.7 V, RE = 2.7 k Ω , RC = 4.7 k Ω , R1 = 47 k Ω , R2 = 10 k Ω , RL = 47 k Ω , Rs = 100 Ω . Determine the Q-point.



13. A non-inverting summer such as the one shown in figure below is used to CO3- App (8) combine three signals. $V_1 = 1 V DC$, $V_2 = -0.2 V DC$, and V_3 is a 2 V peak 100 Hz sine wave. Determine the output voltage if $R_1=R_2=R_3=R_f=20 \text{ k}\Omega$ and $Ri=5 \text{ k}\Omega$.

CO5- R

(8)

CO1- U

- 14. Design a square wave oscillator for f=1kHz. The op-amp is 741 with supply CO4- App (8) ± 15 V.
- 15. Design a symmetrical square waveform generator of 10kHz using 555 timer. CO5- C (8)