Reg. No.:					

Question Paper Code: 53504

B.E. / B.Tech. DEGREE EXAMINATION, DEC 2020

Third Semester

	Elec	etronics and Instrum	entation Engineering				
	1	5UEI304 - DIGITAI	LELECTRONICS				
		(Regulation	n 2015)				
	Duration: 1.15 hrs			Maximum: 30 Marks			
		PART A - (6 x	1 = 6 Marks)				
	(A:	nswer any six of the	e following questions)				
1.	1. Which of the following is minimum error code?						
	(a) Octal code(c) Binary code		(b) Grey code(d) Excess 3 code	e			
2.	Which of the following	expressions is in the	sum-of-products (SOP	') form?			
	(a) $AB + CD$	(b) <i>AB(CD)</i>	(c) (A + B)(C + I)	O) $(d)(A)B(CD)$			
3.	A NAND gate is called	a universal logic ele	ment because				
	(c) all the minization	on can be realized by	olicable for optimum N	IAND gate realization			
4.	How many bits are required to store one BCD digit?						
	(a) 1	(b) 2	(c) 3	(d) 4			
5.	For which of the follow	ying flip-flops, the o	utput is clearly defined	d for all combinations			

5. ıs of two inputs

(a) Q type flip-flop (b) R-S flip-lop (c) J-K flip-lop (d) D flip-flop

6.	How many flip flops are required to construct a decade counter?							
	(a) 10	(b) 8	(c) 5	(d) 4				
7.	Table that is not a part of asynchronous analysis procedure.							
	(a) transition table (b) state table			ole				
	(c) flow table	(d) excitation table						
8.	Race in which stable	Race in which stable state depends on order is called						
	(a) critical race		(b) identica	ıl race				
	(c) non critical ra	(d) defined race						
9.	. Which of the following memories uses one transistor and one capacitor as basic memory unit							
	(a) SRAM	(b) DRAM	(c) Bot	h (a) and (b)	(d) none			
10.	In a read-only memo	ry information can be	stored					
	(a) at the time of fabrication							
	(b) by the user only once during its life time							
	(c) by the user a number of times							
	(d) in any of the above ways depending upon the type of memory							
		PART - B (3 x)	8= 24 Marks))				
	(Answer any three of the following questions)							
11.	. Minimize the given switching function using Quine-Mcclusky method. $f(x1, x2, x3, x4) = \Sigma(0, 5, 7, 8, 9, 10, 11, 14, 15)$.				od. (8)			
12.	Design a BCD ac	dder and explain its wo	orking with ne	ecessary logic dia	agram. (8)			
13.	Design and expla	in a ring counters with	suitable exar	nple.	(8)			
14.	Define races and	explain its types.			(8)			
15.	Explain with nea	t diagrams a RAM arc	hitecture.		(8)			