		Reg. No. :]
		Question Pape	er Cod	e: 533(03			1	1		1
B.E. / B.Tech. DEGREE EXAMINATION, DEC 2020											
Third Semester											
Electrical and Electronics Engineering											
15UEE303 - FIELD THEORY											
		(Regulatio	on 2015)								
Dur	ation: One hour		Maximum: 30 Marks								
PART A - $(6 \times 1 = 6 \text{ Marks})$											
	(A	nswer any six of the	followir	ıg quest	ions)						
1.	The maximum space ra	te of charge of that fu	at function is					CO1 -R			
	(a) Gradient	(b) Curl	(c) Div	ergence			((d) d	el op	erat	or
2.	Under what condition t	he vectors are said to	be in par	callel						CC)1 -R
	(a) A.B=0	(b) AxB=0	(c) Δ .A	=0			((d) ∆	xA=	0	
3.	Poisson's equation is									CC)2-R
	(a) $\Delta^2 V = -\rho/\epsilon$	(b) $\Delta^2 V=0$	(c) ΔV	= -ρ/ε			((d) Δ	V=0)	
4. Relation between electric field intensity and electric flux density D= C							CC)2- R			
	(a) ε/σ	(b) ε/E	(c) E ε				((d) σ	3\		
5.	Hysteresis loop gives the	ne relation of								CC)3- R
	(a) B lags H	(b) B leads H	(c) B in	idepende	ent	(d)) nor	ne of	the	abov	'e
6.	Inductance of a toroid i	s directly proportiona	l to							CC)3- R
	(a) No.of turns	(b) square of the area		(c) are	ea		((d) v	olun	ne	
7.	Maxwells equationIV i	s derived from								CC)4- R
	(a) Faradays law		(b) Am	peres cii	cuit	law					
	(c) Gauss law of electric field			(d) Gauss law of magnetic field							
8.	Circuit theory satisfies									CC)4- R
	(a) Three dimensional a	analysis	(b) sim	ple to un	derst	tand	l				
	(c) reference frequency		(d) voltage is not directly involved								

9.	For a uniform plane wave E and H is at	CO5- R								
	(a) Parallel to each other	(b) different frequency								
	(c) Perpendicular to each other	(d) different phase								
10.	The characteristic impedance of free space is		CO5- R							
	(a) Ratio of E and H	vity								
	(c) square root of Ratio of E and H	ility								
	PART – B (3 x 8= 24 Marks)									
(Answer any three of the following questions)										
11.	Verify the divergence theorem for the follow $ay+y^2z$ az and the surface is a cuboid defined $0 < z < 1$.	CO1 -App	(8)							
12.	Obtain the dipole moment of electric dipole.	CO2- U	(8)							
13.	Determine the magnetic field at point P due t conductor.	CO3- U	(8)							
14.	With necessary explanation, derive the differential and integral forms.	Maxwell's equation in	CO4 -U	(8)						
15.	Sate and explain Poynting's theorem		CO5- U	(8)						