Reg. No. :

Question Paper Code: 43303

B.E. / B.Tech. DEGREE EXAMINATION, DEC 2020

Third Semester

Electrical and Electronics Engineering

14UEE303 – FIELD THEORY

(Regulation 2014)

Duration: One hour

Maximum: 30 Marks

PART A - $(6 \times 1 = 6 \text{ Marks})$

(Answer any six of the following questions)

(a) Addition	(b) Subtraction	(c) Multiplication	(d) All the above
(a) Muulion	(U) Subtraction	(c) Munipheauon	

2. Cross product of two vectors, $\overline{A} \times \overline{B} =$

(a) $ A B \sin \theta \overline{a_n}$	(b) $ A B \cos \theta \overline{a_n}$
(c) $ A B \tan \theta \overline{a_n}$	(d) $ A B \sec \theta \ \overline{a_n}$

3. The space surrounding an electric charge, over which the electric force of attraction (or) repulsion exists, is called its

(a) Coulombs Law	(b) Charge	(c) Electric Field	(d) Gauss Law
------------------	------------	--------------------	---------------

4. ε_0 is

(a) 8.854*10 ⁻¹² F/M	(b) $6.854*10^{-12}$ F/M
(c) 6.854*10 ⁻¹² H/M	(d) $8.854*10^{-12}$ F/M

5. Which of the following is the unit of magnetic flux density

(a) Weber	(b) Lumens
(c) Tesla	(d) None of these

6. The relationship between Magnetic flux density and Magnetic field Intensity is given by

(a)
$$\mathcal{E}$$
 (b) μ (c) α (d) β

- 7. Substance which have the permeability less than the permeability of free space are known as
 - (a) ferromagnetic (b) paramagnetic
 - (c) diamagnetic (d) bipolar
- 8. Reluctance of magnetic circuit

(a)
$$\frac{A}{l\mu}$$
 (b) $\frac{l}{A\mu}$ (c) $\frac{l}{\mu}$ (d) $\frac{A}{\mu}$

9. Velocity of propagation of electro-magnetic wave through free space

(a)
$$V = \frac{1}{\sqrt{\mu_0 \varepsilon_0}} m/sec$$

(b) $V = \sqrt{\mu_0 \varepsilon_0} m/sec$
(c)) $V = \frac{1}{\sqrt{\mu_0 \varepsilon_0}} m^2/sec$
(d) $V = \sqrt{\mu_0 \varepsilon_0} m^2/sec$

10. A point form of faraday's law is

(a)
$$\nabla . \overline{D} = -\rho_v$$

(b) $\nabla . \overline{D} = \rho_l$
(c) $\nabla \times \overline{E} = -\frac{\partial \overline{B}}{\partial t}$
(d) $\nabla \times \overline{E} = \frac{\partial \overline{B}}{\partial t}$

(Answer any three of the following questions)

11. Explain briefly the spherical and cylinderical coordinate systems. (8)

- 12. Develop an expression for *E* and *D* due to the infinity sheet of charge placed in Z = 0 plane, using Gauss's Law. (8)
- 13. Develop an expression for magnetic field intensity on the axis of a circular loop current carrying a current I and also find at the center of the coil, where h = 0. (8)
- 14. State and explain Faraday's electromagnetic induction law. (8)
- 15. Derive the expression for wave propagation in conducting medium. (8)