		Reg. No.:											
Question Paper Code: 33303													
	B.E. / B.Te	ch. DEGREE EXAN	MINA	TIOI	N, DEC	2020)						
		Third Seme	ester										
	Ele	ectrical and Electron	ics E	ngine	ering								
		01UEE303 - FIELI) TH	EORY	Y								
		(Regulation	2013)									
D	uration: One hour	ν ο	ĺ		Max	ximu	m: 30) Mai	rks				
		PART A - (6 x 1 =	= 6 M	arks)									
	(Answ	er any six of the fol	llowi	ng qu	estions)								
1.	Vector algebra includes												
	(a) Addition	(b) Subtraction	(c) Mul	tiplicatio	n	(d) A	All the	e abo	ve			
2.	Cross product of two vector	ors, $\bar{A} \times \bar{B} =$											
	(a) $ A B \sin \theta \overline{a_n}$ (c) $ A B \tan \theta \overline{a_n}$				A B c								
3.	The space surrounding an electric charge, over which the electric force of attraction (or repulsion exists, is called its												
	(a) Coulombs Law	(b) Charge	(c) Elec	tric Field	d	(d) C	auss	Law	7			
4.	ε_0 is												
	(a) $8.854*10^{-12}$ F/M			(b) $6.854*10^{-12}$ F/M									
	(c) $6.854*10^{-12}$ H/M			(d) $8.854*10^{-12}$ F/M									

5. Which of the following is the unit of magnetic flux density

(a) Weber (b) Lumens

(c) Tesla (d) None of these

7.	Substance which have the permeability as	less than the permeability of free space are known				
	(a) ferromagnetic(c) diamagnetic	(b) paramagnetic(d) bipolar				
8.	Reluctance of magnetic circuit	•				
	(a) $\frac{A}{l\mu}$ (b) $\frac{l}{A\mu}$	(c) $\frac{l}{\mu}$ (d) $\frac{A}{\mu}$				
9.	Velocity of propagation of electro-magn	netic wave through free space				
	(a) $V = \frac{1}{\sqrt{\mu_0 \varepsilon_0}} m/sec$	(b) $V = \sqrt{\mu_0 \varepsilon_0} \ m/sec$				
	(c)) $V = \frac{1}{\sqrt{\mu_0 \varepsilon_0}} m^2 / \text{sec}$	(d) $V = \sqrt{\mu_0 \varepsilon_0} m^2 / \text{sec}$				
10.	A point form of faraday's law is					
	(a) $\nabla . \overline{D} = -\rho_v$	(b) $\nabla . \overline{D} = \rho_l$				
	(c) $\nabla \times \bar{E} = -\frac{\partial \bar{B}}{\partial t}$	(d) $\nabla \times \bar{E} = \frac{\partial \bar{E}}{\partial t}$				
	PART – B	(3 x 8= 24 Marks)				
	(Answer any three	of the following questions)				
11.	State and prove Divergence theorem	m. (8)				
12.	State and prove Gauss's law.	(8)				
13.	Using Bio-Savart law find H due to finite and infinitely long straight conductor. (8)					
14.	Derive the expressions for displace	ment current and conduction current densities. (8)				
15.	State the Poynting vector and established	lish its usage in Electromagnetic wave analysis. (8)				

6. The relationship between Magnetic flux density and Magnetic field Intensity is given by

(c) α

(b) μ

(a) \mathcal{E}

(d) β