Reg. No.:					

Question Paper Code: 47302

B.E. / B.Tech. DEGREE EXAMINATION, DEC 2020

Seventh Semester

Electrical and Electronics Engineering

14UEE7	02 – POWER SYS	TEM OPERATION AND	CONTROL
	(Re	gulation 2014)	
Duration: 1.15 hrs			Maximum: 30 Marks
	PART A	$A - (6 \times 1 = 6 \text{ Marks})$	
	(Answer any six	x of the following question	ons)
1. The area under the	daily load curve giv	res	
(a) The number of	units generated in a	a day (b) Average load of	the day
(c) The load factor	r of the day	(d) The number of	units generated in the year
2. The load factor for	domestic loads may	be taken as	
(a) about 85%	(b) 50-60%	(c) 25-50%	(d) 20-15%
3. In an ALFC loop, the	ne frequency deviat	ion can be reduced using	controller.
(a) Differential	(b) Integral	(c) Proportional	(d) All of these Plan
4. The time constant of	of power system who	en compared to a speed go	overnor is
(a) Less	(b) More	(c) Same	(d) None of these
5. The different types	of tap changing trai	nsformers are	
(a) Off-load (b) On load		(c) Both (a) and (b)	(d) Either (a) or (b)
6. Which is treated as	the heart of an exci	tation system?	
(a) Main exciter	(b) Pilot exciter	(c) Rotor field exciter	(d) AVR
7. The optimum alloca	ation of the generate	or at each generating station	on at various station load

- (a) State estimation (b) Unit commitment (c) Economic dispatch (d) None of these
- 8. When load on a thermal unit is increased, then fuel input

levels is called _____.

- then foud on a thermal time is mercused, then fuel input
- (a) Increases (b) Does not change (c) Decreases
- (d) None of these

9. A S	State estimatio	n scheme is				
(a) Lagrangian function method(c) Lyapunov method		` ' ' ' ' ' '	(b) Negative gradient method(d) Weighted least square method			
10. T	he system is in	n secure condition, even	the occurrence of	all possible outages, the		
	system remai	n secure then the operat	ing mode of power	system is		
(a) Alert mode (b) normal mode		(b) normal mode	(c) 16-bit	(d) contingency mode		
		PART - B	(3 x 8= 24 Marks)			
		(Answer any three o	of the following qu	estions)		
11.	Why is the	load on a power station	variable? What are	the effects of variable		
	load on th	ne operation of the powe	r station?	(8)		
12.	Derive the	transfer function model	of load frequency of	control of a Double area power		
	system wit	h necessary equations.		(8)		
13.	Draw the circuit diagram of a typical excitation system of an alternator and derive					
	the transfer	function model for the	same.	(8)		
14.	The fuel co	sts of two units are give	n by:			
				$P_{G2} + 0.12 P_{G2}^2$ Rs/hr. P_{G1} and sing losses for a demand of 200 (8)		
15.	With a neat	diagram, explain the var	rious components in	nvolved in computer control of		
	power syste	ms using SCADA.		(8)		