Reg. No. :

Question Paper Code: 54502

B.E. / B.Tech. DEGREE EXAMINATION, DEC 2020

Fourth Semester

Electronics and Instrumentation Engineering

15UEI402 - CONTROL ENGINEERING

(Regulation 2015)

Duration: 1:15hrs

Maximum: 30 Marks

PART A - $(6 \times 1 = 6 \text{ Marks})$

(Answer any six of the following questions)

1. Control of industrial process by automatic rather than manual means is often called as

(a) Negative feedback	(b) Automation
(c) A design gap	(d) A specification

- 2. Closed loop control system should have which of the following properties
 - (a) Good Regulation against disturbance
 - (b) Desirable response to commands
 - (c) Low sensitivity to changes in plant parameters
 - (d) All the above
- 3. A system has a transfer function of $(s) = \frac{50}{s+50}$, when the response reaches its 63% of its final value
 - (a) 0.02 sec (b) 0.05 sec (c) 0.10 sec (d) 0.50 sec
- 4. What is the Laplace transform of impulse input having magnitude 'X'?
 - (a) X (b) X^2 (c) 1/X (d) 1

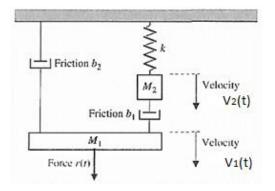
- 5. A transfer function of a system is $G(s) = \frac{10((1+0.2s))}{(1+0.5s)}$. The phase shift at $\omega = 0$ and $\omega = \infty$, will be respectively
 - (a) 90° and 0° (b) -180° and 180°

 (c) -90° and 90° (d) none of these

6. A bode magnitude plot of a system has -20dB gain at low frequencies. The system is

- (a) Type 0(b) Type 1(c) Type 2(d) Nothing can be deduced about type number
- 7. Using Routh's criterion, the number of roots lying in the right half S-plane for the characteristic equation $s^4 + 2s^3 + 2s^2 + 3s + 6 = 0$ is
 - (a) 1 (b) 2 (c) 3 (d) 4
- 8. Using Routh's criterion, the number of roots lying in the right half S-plane for the characteristic equation $s^4 + 2s^3 + 2s^2 + 3s + 6 = 0$ is
 - (a) 1 (b) 2 (c) 3 (d) 4
- 9. The number of integrators in a state diagram is equal to number of

(a) State variables	(b) Phase variables
(c) State vector	(d) Input vector


10. Consider a second order system whose state-space representation is of the form X = AX + Bu. If $x_1(t) = x_2(t)$, the system is

(a) controllable	(b) uncontrollable
(c) observable	(d) unstable

PART - B (3 x 8= 24 Marks)

(Answer any three of the following questions)

11. Derive $V_1(s)/R(s)$ the Force current analogy by transforming the given mechanical system. (8)

- 12. Derive the expression for second order system in under damped condition when input is unit step and also draw its response. (8)
- 13. Consider the unity feedback system type 1 system with open loop transfer function $G(s) = \frac{K}{s^2(0.2s+1)}$, Assume that system is required to be compensated to meet the following specifications.

(i) Acceleration error constant
$$K_a=10$$

(ii) Phase margin $\geq 35^{\circ}$. (8)

- 14 Applying Routh stability criterion and comment the range of stability of the closed loop system which have the characteristic equation as follows $(s+2)(s+4)(s^2+6s+25)+k.$ (8)
- 15. Determine the state model of armature controlled DC motor. (8)