Reg. No.:					

Question Paper Code: 54303

B.E. / B.Tech. DEGREE EXAMINATION, DEC 2020

Fourth Semester

Electrical and Electronics Engineering

15UEE403- CONTROL SYSTEMS

(Regulation 2015)

Duration: 1.15 hrs

PART A - $(6 \times 1 = 6 \text{ Marks})$ (Answer any six of the following questions)

	(rins wer any	SEE OF THE IC	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(destions)		
1.	Transfer function of a system following?	is used to	calculate	which of	the	CO1- U
	(a) The order of the system	(b)	The time	constant		
	(c) The output for any given input	(d)				
2.	The overall transfer function from block diagram reduction for cascaded blocks is given by					CO1-U
	(a) Sum of individual gain	(b) Product of individual gain				
	(c) Difference of individual gain (d) Division of individual gain					
3.	If the characteristic equation of a closed-loop system is $s^2+2s+2=0$, then the system is					
	(a) Over damped (b) Critical	ly damped	(c) Und	er damped	(d) undamp	ed
4.	Root locus is used to calculate					CO2 -R
	(a) Marginal stability	(b) Absolut				
	(c) Conditional stability	(d) Relative stability				
5.	The unit adopted for magnitude measurement in Bode plots is					CO3-R
	(a) Degree	(b) Decima	1 (c) I	Decibel	(d) Devi	ation
6.	The frequency at which magnitude	e of closed lo	op respon	se is do	own	CO3-R

(c) 0.33dB

(d) 3dB

from its zero frequency value is called as cut off frequency.

(b) 30dB

(a) 0.3dB.

7. For Nyquist contour, the size of radius is

CO4-R

(a) Zero

- (b) Unity
- (c) Infinity
- (d) Constant
- 8. The characteristic equation of a system is given as $3S^4 + 10S^3 + 5S^2 + 2 = 0$. This system is:
- CO4-U

- (a) Marginally stable
- (b) Stable
- (c) Unstable
- (d) Linear
- 9. State space analysis is applicable even if the initial conditions are

CO5- U

(a) Zero

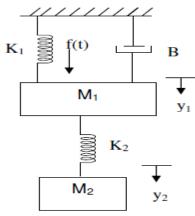
- (b) Non-zero
- (c) Equal
- (d) Not equal

10. Solution of state equation is-----

CO5 -R

- (a) $e^{-At}_{X(0)}$
- (b) e^{At}

- (c) $e^{At}_{X(0)}$
- (d) $-e^{At}_{X(0)}$


$$PART - B (3 \times 8 = 24 \text{ Marks})$$

(Answer any three of the following questions)

11. Determine the transfer function $Y_2(S)/F(S)$ of the system shown in

CO1- App

(8)

- 12. Determine the generalized error coefficient and steady state error for a CO2-App system whose open loop transfer function is G(s) = 1/(S(S+1)(S+10)) and the feedback transfer function is H(s) = (S+2) with input $r(t) = 6+t + t^2$
- 13. The open loop transfer function of a unity feedback system is given by CO3- App (8) $G(S) = \frac{1}{S(S+1)(2S+1)}.$ Sketch the polar plot and determine the gain

margin and phase margin.

14. Explain the procedure for the design of the lag compensator based on CO4- Ana frequency response approach. (8)

15. The state model of the system is given by

$$\begin{bmatrix} \dot{x_1} \\ \dot{x_2} \\ \dot{x_3} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 10 \end{bmatrix} u;$$

$$y = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Find the transfer function for the given state model.

CO5- Ana

(8)