			<u>г г</u>	1		1	r				
		Reg. No. :									
		Question Pape	er Code	e: 57	101	L					
B.E./B.Tech. DEGREE EXAMINATION. DEC 2020											
Fifth Semester											
Electrical Engineering											
15UEE504 - ELECTRICAL MACHINE DESIGN											
(Regulation 2015)											
Duration: One hour			Maximum: 30 Marks								
PART A - $(6 \times 1 = 6 \text{ Marks})$											
(Answer any six of the following questions)											
1.	Unit for specific	electric loading								CO)1- R
	(a) Ampere-cond	uctors	(b) .	Amp	ere-c	ondu	uctor	s /m			
	(c) Ampere/m		(d) .	Amp	ere						
2.	For generators									CO	1- R
	(a) Pa= P	(b) $Pa = P/\eta$	(c) P	a = F	P/Po		(d)]	Pa= 1	ηP		
3.	Real flux density is 2.2 T and permeability is 31.4 x 10 -6 H/m. CO2- R										
	the magnetic fiel	he magnetic field intensity									
	(a) 70.063 AT	(b) 70.063 AT/ m ²	(c) 7	0.063	3 AT	'/m	(d)	70.0	63 A	∖T /n	n ³
4.	When ducts are p	present								CO2	2- R
	(a) Slot pitch red	(b) L	(b) Length reduces								
	(c) Diameter reduces		(d) N	(d) None of the above							
5.	A 3-phase 900 kVA, 3 kV / $\sqrt{3}$ kV (Δ /Y), 50 Hz transformer has primary (high voltage side) resistance per phase of 0.3 Ω and secondary (low voltage side) resistance per phase of 0.02 Ω . Iron loss of the transformer is 10 kW. The full load % efficiency of the transformer operated at unity power factor is (up to 2 decimal places).										
	(a) 97.20 (b) 102.5	(c) 9	9.5			(d) 9	93.5			

6.	The percentage impedance of a 100 kVA, $11kV / 400V$, delta/wye, 50 Hz transformer is 4.5%. For the circulation of half the full load current during short circuit test, with low voltage terminals shorted, the applied voltage on the high voltage side will be								
	(a) 247.5 V	(b) 230.5	(c) 249.8 (d) 228.7					
7.	In an induction motor, rotor speed is always								
	(a) Less than t	(b) More than the st	e than the stator speed						
	(c) Equal to the	ve							
8.	An induction motor of 10 HP at 750 rpm has efficiency of 83%. An induction motor of 100 HP at 750 rpm can be expected to have an efficiency of								
	(a) 81%	(b) 83%	(c) 90%	(d) 99.9	%				
9.	What is the range of SCR (Short Circuit Ratio) for turbo alternators?								
	(a) 0.5 to 0.7	(b) 0.05 to 0.07	(c) 0.15 to 0.17	(d) 0.25 t	o 0.27				
10.	What is the application of synchronous compensators?								
	(a) Control of real power (b) Control of active power								
	(c) Control of	(d) Control of apparent p	ower						
		PART -	- B (3 x 8= 24 Marks)						
		(Answer any the	ree of the following question	ns)					
11.	Determine the factors affecting the choice of specific magnetic CO1- E loading in rotating machines.								
12.	Solve the main dimension of number of poles of a 37 KW, CO2-C 230 v, 1400 rpm dc shunt motor, so that a square pole face is obtained . the average gap density is $0.6Wb/m^2$ and the ampere conductors per metre are 24000. The ratio of pole arc to pole pitch is 0.67. and the full load efficiency is 90 percent.								
13.	Evaluate the kVA output of a single phase transformer from CO3- E following data; Core height/distance between core centres = 2.8 ; diameter of circumscribing circle/ distance between the core centres = 0.56 ; net iron area / area of circumscribing circle = 0.7, Current density = 2.3 A/mm ² , window space factor = 0.27, frequency = 50Hz, flux density of core = 1.2 Wb/m ² , distance between core centres = 0.4m.								

- 14. The following design data are provided for an induction motor. CO4- C (8) Calculate
 - (i) No load maximum flux
 - (ii) Length of air gap
 - (iii) number of turns per phase
 - (iv) rotor bar current and area
 - (v)end ring current and area and

(vi) losses in bars and end rings. Diameter of stator -15cm, Length of stator-9cm,Average flux density – 0.45 Tesla, Efficiency- 84% Power Factor- 0.86,3 phase, 4 pole, 400v delta connected 10 KW, Frequency- 50HZ, Current density-5A/mm²,Stator slots- 36, Rotor slots-30,Length of rotor bar-15cm,Mean dia. Of end ring-12cm.

15. Calculate the main dimensions for a 1000 kVA, 50 Hz, 3 phase, CO5- E 375 rpm alternator. The average air gap flux density is 0.55 Wb/m2 and the ampere conductors per meter are 28000. Use rectangular poles and assume a suitable value for ratio of core length to pole pitch in Order that bolted on pole construction is used for which the maximum permissible peripheral speed is 50 m/s. The run-away speed is 1.8 times the synchronous speed.