Reg. No.:					

Question Paper Code: 57101A

B.E./B.Tech. DEGREE EXAMINATION, DEC 2020

Fifth Semester

Electrical Engineering

15UEE504 - ELECTRICAL MACHINE DESIGN

		(Reg	ulation 2	2015)				
Duration: One hour				Maximum: 30 Marks				
		PART A -	(6 x 1 =	= 6 Marks)				
(Answer any six of the following questions)								
1.	Specific resistance of Aluminium is			_ times that of Copper.			CO1- R	
	(a) 2	(b) 1.64	(c) 0.	64	(d) 0.	82		
2.	For generators						CO1- R	
	(a) Pa= P	(b) $Pa = P/\eta$		(c) Pa = I	P/Po	(d) Pa= ηP		
3.	Real flux density is 2.2 T and permeability is 31.4 x 10 -6 H/m.					/m.	CO2- R	
	the magnetic field intensity							
	(a) 70.063 AT	(b) 70.063 AT/ r	m^2	(c) 70.063	3 AT /m	(d) 70.063	AT/m^3	
4.	When ducts are p	oresent					CO2- R	
	(a) Slot pitch redu	uces	(b) Length reduces					
	(c) Diameter reduces			(d) None				
5.	A 3-phase 900 kVA, 3 kV / $\sqrt{3}$ kV (Δ /Y), 50 Hz transformer has primary (high voltage side) resistance per phase of 0.3 Ω and secondary (low voltage side) resistance per phase of 0.02 Ω . Iron loss of the transformer is 10 kW. The full load % efficiency of the transformer operated at unity power factor is (up to 2 decimal places).							

(c) 99.5

(d) 93.5

(a) 97.20

(b) 102.5

6.	transformer is short circuit te	4.5% . For the circulation	O kVA, 11kV / 400V, delta/ation of half the full load curterminals shorted, the apple	rent during	CO3- R		
	(a) 247.5 V	(b) 230.5	(c) 249.8	(d) 228.7			
7.	In an induction motor, rotor speed is always						
	(a) Less than the stator speed		(b) More than the s				
	(c) Equal to the	ne stator speed	(d) None of the abo				
8.			O rpm has efficiency of 83% pm can be expected to have		CO4- R		
	(a) 81%	(b) 83%	(c) 90%	(d) 99.9	d) 99.9 %		
9.	What is the ran	nge of SCR (Short Ci	rcuit Ratio) for turbo alterna	tors?	CO5- R		
	(a) 0.5 to 0.7	(b) 0.05 to 0.07	(c) 0.15 to 0.17	(d) 0.25 t	o 0.27		
10.	What is the application of synchronous compensators?						
	(a) Control of real power (b) Control of active power						
	(c) Control of	reactive power	(d) Control of apparent power				
		PART -	- B (3 x 8= 24 Marks)				
		(Answer any thi	ree of the following questio	ns)			
11.	Illustrate the various duty types of Electrical machines with neat CO1- Ediagrams.				(8)		
12.	Derive an output equation for DC machine in terms of output CO2-C coefficient. Also write the significance of output coefficient in the machine design.						
13.	dimensions learnespectively. Tradiations 6 V provision of tue	ingth, width and heighther load loss = 13.1 $V/m.sq - {}^{0}C.$ improvables = 40%, temperation 50 mm. Find the deglect the top and be	cooled transformer has the that as $0.65 \times 1.55 \times 1.85$ m kW, loss dissipation due to the transfer in convection due to a ture rise is 40^{0} C, length of number of tubes for this ottom surface of the tank a	n o o f s	(8)		

- 14. The following design data are provided for an induction motor. CO4- C

 Calculate (8)
 - (i) No load maximum flux
 - (ii) Length of air gap
 - (iii) number of turns per phase
 - (iv) rotor bar current and area
 - (v)end ring current and area and
 - (vi) losses in bars and end rings. Diameter of stator -15cm, Length of stator-9cm, Average flux density 0.45 Tesla, Efficiency- 84% Power Factor- 0.86,3 phase, 4 pole, 400v delta connected 10 KW, Frequency- 50HZ, Current density-5A/mm², Stator slots- 36, Rotor slots-30, Length of rotor bar-15cm, Mean dia. Of end ring-12cm.
- 15. Derive the output equation for a synchronous machine. CO5- E (8)