Reg. No. :	
------------	--

Question Paper Code: 35302

B.E. / B.Tech. DEGREE EXAMINATION, DEC 2020

Fifth Semester

Electrical and Electronics Engineering

01UEE502 - CONTROL SYSTEMS

(Regulation 2013)

Duration: One hour

Maximum: 30 Marks

PART A - $(6 \times 1 = 6 \text{ Marks})$

(Answer any six of the following questions)

1.	In force-current analogy, the mass is analogous to				
	(a) capacitance	(b) inductance	(c) conductance	(d) flux linkage	
2.	Signal flow graphs can be used to represent				
	(a) only linear system	ns			
	(b) only nonlinear sy	/stems			
	(c) both linear and n	onlinear systems			
	(d) time invariant as	well as time varying	systems		
3.	The undamped systems,	the damping ratio is			
	(a) $\zeta = 0$	(b) $\zeta = 1$	(c) $\zeta < 1$	(d) $\zeta > 1$	
4.	The Terzaghi's general bearing capacity equation is represented as				

(a) qf = 5.7 c + σ	(b) $qf = c Nc + \overline{\sigma} Nq + 0.5\gamma BN\gamma$
(c) $qf = c Nc + \overline{\sigma}. Nq$	(d) $qf = c Nc$

5. The relation between resonant frequency and undamped natural frequency is

(a)
$$\omega_r = \omega_n \sqrt{1 - 2\zeta^2}$$

(b) $\omega_n = \omega_r \sqrt{1 - 2\zeta^2}$
(c) $\omega_r = \omega_n \sqrt{2\zeta^2 - 1}$
(d) $\omega_n = \omega_r \sqrt{2\zeta^2 - 1}$

- 6. The Phase Margin of the system is 0^0 . It represents a
 - (a) Stable system(b) Unstable system(c) Conditionally stable system(d) Marginally stable system
- 7. The number of sign changes in the element of the first column of the routh array denotes(a) the number of zeros of the closed loop system in the RHP
 - (b) the number of poles of the closed loop in the RHP
 - (c) the number of zeros of the closed loop system in the LHP
 - (d) the number of poles of the closed loop in the LHP
- 8. A lead compensator
 - (a) improves the steady state accuracy (b) reduces the bandwidth
 - (c) increases the bandwidth (d) reduces the speed of response
- 9. The number of state variable of a system is equal to
 - (a) the number of integrators present in the system
 - (b) the number of differentiators present in the system
 - (c) the sum of the number of integrators and differentiators present in the system
 - (d) none of the these
- 10. The state transition matrix for the system $\dot{x} = Ax$ with initial state x (0) is

(a) $(SI - A)^{-1}$ (b) $e^{At}x(0)$ (c) Laplace inverse of [$(SI - A)^{-1}$] (d) Laplace inverse of [$(SI - A)^{-1}X(0)$]

PART - B (3 x 8 = 24 Marks)

(Answer any three of the following questions)

11. Obtain the closed loop transfer function C(S) / R(S) by using Mason's Gain Formula.

(8)

- 12. Sketch the root locus of the system whose open loop transfer function is $G(S) = \frac{K}{S(S+2)(S+4)}.$ Find the value of *K* so that the damping ratio of the closed loop system is 0.5. (8)
- 13. Sketch Bode plot for the following transfer function and determine the gain and phase cross over frequencies.

$$G(s) = \frac{10}{s(1+0.4s)(1+0.1s)}.$$
(8)

- 14. Use the routh stability criterion to determine the location of roots on the s-plane and hence the stability for the system represented by the characteristic equation $s^{5} + 4s^{4} + 8s^{3} + 8s^{2} + 7s + 4 = 0.$ (8)
- 15. Determine the canonical state model of the system, whose transfer function is

$$T(s) = \frac{2(s+5)}{(s+2)(s+3)(s+4)}$$

#