		Reg. No. :										
Question Paper Code: 53403												
B.E. / B.Tech. DEGREE EXAMINATION, DEC 2020												
Third Semester												
Electronics and Communication Engineering												
15UEC303 - CIRCUIT THEORY												
(Regulation 2015)												
Dur	ation: One hour	Maximum: 30 Marks										
PART A - $(6 \times 1 = 6 \text{ Marks})$												
(Answer any six of the following questions)												
1.	The complementary set of branches of the tree is called the of the graph							CO	1- R			
	(a) Co-tree	a) Co-tree (b) Twigs (c) Links (d) Che								rds		
2.	If R_1 and R_2 are connected in parallel then the current through R_1 is									CO	1- R	
	(a) I ₂ *[R ₂ / (R ₁ +R ₂)]	(b) I*[R ₁ / (R ₁ +R	(c) I	*[R ₂ / (I	$R_1 + R_2$)]	(d) I	*[(F	R ₁ +R	2)/ R	2]	
3.	Thevenin's equivalent	Thevenin's equivalent circuit consists of with impedance.									2- R	
	(a) Voltage source in	(b) Voltage source in series.										
	(c) Current source in	(d	(d) Current source in parallel									
4.	The Thevenin's equivalent circuit contains									CO2	2- R	
	(a) voltage source in series with resistance											
	(b) voltage source in parallel with resistance											
	(c) current source in series with resistance											
	(d) current source in parallel with resistance											
5.	In a series RLC circu	the appl	he applied voltage when $X_L < X_C$							3- R		
	(a) Lag behind	a) Lag behind (b) Leads (c) In phase with (d) N								ot related to		
6.	If $X_L = 23 \Omega$ and th value is	e supply frequency	v is 50 Hz,	then ind	uctanc	ce L				CO3	3- R	
	(a) 0.053 H	(b) 0.063 H	((c) 0.073 I	H		(d) 0.054 H					

(Answer any three of the following questions)

11. Calculate loop currents by mesh analysis

13. For the series resonant circuit with R=2 Ω , $X_L=X_C=10\Omega$ and CO3- Ana (8) E=10V. find I, V_R , V_L and V_C at resonance. Also, if resonant frequency is 5000Hz, determine bandwidth, Q factor, half power frequencies and power dissipated in the circuit at resonance and at the half power frequencies. Derive the expression for resonant

CO1- App

(8)

frequency.

14.Find Z parameters for the following network.CO4- App(8)

15.Derive the mutual inductance and the coupling coefficient of theCO5- U(8)transformer with necessary illustration