Reg. No.:					

Maximum: 30 Marks

(d) 1

Question Paper Code: 46424

B.E. / B.Tech. DEGREE EXAMINATION, DEC 2020

Sixth Semester

Electrical and Electronics Engineering

14UEC624 - APPLIED DIGITAL SIGNAL PROCESSING

(Regulation 2014)

(Common to EIE and ICE branches)

Duration: 1.15 hrs

(a) 8

		PART A - (6 x 1 =	6 Marks)		
	(Answ	ver any six of the fol	lowing questions)		
1.	The system $y(t) = 3x(t) + 5$	is a system			
	(a) Non-linear	(b) Dynamic	(c) Non-Causal	(d) unstable	
2.	Integration of step signal results in signal.				
	(a) ramp	(b) delta	(c) Sinusoidal	(d) triangular	
3.	The LTIDT system with system function $h(n)=a^n u(n)$ is stable, only if				
	(a) a>1	(b) 1/a<∞	(c) a<∞	(d) a<1	
4.	Convolution in time domain	n is equal to	in frequency domain.		
	(a) addition	(b) multiplication	(c) compression	(d) expansion	
5.	The phase factors are multi	plied before the add	and subtract operations in	1	
	(a) DIT Radix 2 FFT		(b) DIF Radix 2 FFT		
	(c) Inverse DFT		(d) Both (a) and (c)		
6.	Compute the $X(0)$ of the se	quence $x(n) = \{1, 0, 1\}$, 0, 1, 0, 1, 0		

(c) 2

(b) 4

	where N is the duration	on of the sequence.						
	(a) $h(n+N-1)$	(b) $h(N+1-n)$	(c) h(N-1-n)	(d) h(n-N-1)				
8.	When s= LPF is converted to HPF in analog domain.							
	(a) $\frac{s}{\Omega_c}$	(b) $\frac{\Omega_c}{s}$	(c) $s\Omega_c$	(d) s^2				
9.	The pipeline depth of TMS320C50 is							
	(a) 6	(b) 4	(c) 2	(d) 0				
10.	The function of wait-	state generator is						
	(c) To insert wai	t-state in data memory c t-state in program memo t-state in external bus cy	ory cycles					
		PART – B (3 x 8=	= 24 Marks)					
	(Aı	nswer any three of the	following questions	s)				
11.		/3) -n) ²)						
12.	_	Using residue method find the inverse Z transform of $X(z) = \left[1 + 3z^{-1}\right] / \left[\left(1 + 3z^{-1} + 2z^{-2}\right)\right], z > 2. \tag{8}$						
13.	` ′ -	Evaluate 8-point DFT of the following sequence using DIT-FFT (8)						
	$x[n]=\{2, 1, 2, 1, 1, 2, 1, 2\}.$							
14.	Design a digital low-pass Butterworth IIR filter using bilinear z-transform with a 3dB cut-off frequency of 2kHz and minimum attenuation of 30dB at 4.25kHz for a							
	sampling rate of	•	mam auchuanon or	(8)				
15.	With a neat block	With a neat block diagram explain in detail about the architecture of TMS320C50.						

7. The condition for linear phase characteristic in FIR filter is, the impulse h(n)=_____

(8)