	Reg. No.:									
	Question Pape	er Code:	4640	1						
B.E. /	B.Tech. DEGREE	EXAMIN	ATION	N, DE	EC 20	020				
Sixth Semester										
Electronics and Communication Engineering										
14UEC601 - DIGITAL SIGNAL PROCESSING										
(Regulation 2014)										
Duration: 1.15 hrs Maximum: 30 Marks							arks			
	PART A -	$(6 \times 1 = 6)$	Marks)						
(Answer any six o	f the follo	wing q	uesti	ons)					
1. The convolution by I	FT is called									
(a) linear convolution (b) circular convolution										
(c) fast convolution	on	(d) slow	convol	ution						
2. DFT of $\delta(n)$ is	(b) 0	(a)			(d) 1				
(a) 13. In impulse invariant n	(b) 0 nethod relationsh) ∞ n ω and	O is		d) - 1 en by				
(a) $\Omega = \frac{2}{T_s} \tan(\frac{\omega}{2})$		$\omega = \frac{\Omega}{T_s}$	i w una	1 42 19	5110	on oy	,			
(c) $\Omega = \frac{1}{\pi} \tan(\frac{\omega}{2})$	(d)	$\omega = \Omega T$, S							

4. If N_B and N_C are the orders of the Butterworth and Chebyshev filters respectively to meet the same frequency specifications, then which of the following relation is true?

(a) $N_C = N_B$

(c) $\Omega = \frac{1}{T_s} \tan(\frac{\omega}{2})$

(b) $N_C < N_B$

(c) $N_C > N_B$

(d) Cannot be determined

5.	Which region of the frequency specification has to be optimized to reduce side lobes of the FIR filter?											
		Stop band		` ′	Pass band							
	(c)	Transition band		(d) None of these								
6.	The val	values of cutoff frequencies in general depend on										
	(a)	Type of the win	dow	(b) Length of the window								
	(c)	Neither (a) nor ((b)	(d)	Both (a) and (b)							
7.	7. Calculate the improvement of signal to quantization noise ratio with an increase of 2 bits to existing bits.											
	(a)	2dB	(b) 6dB	(c)	4dB	(d) 12dB						
8.	Which of the following is not a quantization error occuring in digital systems?											
	(a)	Input quantization error			(b) Product quantization error							
	(c) Coefficient quantization er		ntization error	(d) Output quantization error								
9.	9. Which of the following is the disadvantage of sampling rate conversion by converting the signal into analog signal?											
	(a)	(a) Signal distortion										
(b) Quantization effects												
	(c) New sampling rate can be arbitrarily selected(d) Both (a) and (b)											
10.	What v	alue should the b	andwidth of x(n) has	s to b	e reduced in ord	er to avoid aliasing?						
	(a)	F/D	(b) F/2D	(c)	F/4D	(d) none of these						
			PART – B (3 x 8	= 24	Marks)							
(Answer any three of the following questions)												
11.	Per	form circular co	nvolution of the follo	owin	g sequence. X(n)	$=\{-1,1,2,-1,1,2\}$ and						
$h(n)=\{2,1,-2\}.$												

- 12. Design a digital chebyshev filter that satisfying the following frequency response $0.707 \le |H(e^{j\omega})| \le 1$ for $0 \le \omega \le \frac{\pi}{2}$ $|H(e^{j\omega})| \le 0.2$ for $\frac{3\pi}{4} \le \omega \le \pi$
 - with T=1 sec using impulse Invariant Transformation technique (8)
- 13. Design a FIR Linear phase, Digital filter approximating the ideal high-pass filter

with a frequency response
$$H_d(e^{j\omega}) = \begin{cases} 1 & for \frac{\pi}{4} \le |\omega| \le \pi \\ 0 & |\omega| < \frac{\pi}{4} \end{cases}$$

- (i) Determine the co-efficient of 11 tap filter based on the window method Hanning.
- (ii) Determine and plot the magnitude and phase response of the filter. (8)
- 14. A non-recursive system H (z) is designed such a way that, two Linear phase systems $H_1(z)$ and $H_2(z)$ are connected in cascade. Which are given as $H_1(z) = \frac{1}{1 a_1 z^{-1}}$ and $H_2(z) = \frac{1}{1 a_2 z^{-1}}$. Find the output round off noise power? Assume $a_1 = 0.5$ and $a_2 = 0.6$.
- 15. Explain in detail about two basic operations in Multirate Signal Processing. (8)