Reg. No. :										
------------	--	--	--	--	--	--	--	--	--	--

Question Paper Code: 56424

B.E. / B.Tech. DEGREE EXAMINATION, DEC 2020

Sixth Semester

Electrical and Electronics Engineering

01UEC624 - APPLIED DIGITAL SIGNAL PROCESSING

(Common to EIE and ICE)

(Regulation 2013)

Duration: 1.15 hrs

Maximum: 30 Marks

PART A - $(6 \times 1 = 6 \text{ Marks})$

(Answer any six of the following questions)

1.	The system y (t) $=3x$ (t) $+5$ is a system.								
	(a) Non-linear	(b) Dynamic	(c) Non-Causal	(d) unstable					
2.	Integration of step signal results in signal.								
	(a) ramp	(b) delta	(c) Sinusoidal	(d) triangular					
3.	The LTIDT system with system function $h(n)=a^n u(n)$ is stable, only if								
	(a) a>1	(b) 1/a<∞	(c) a<∞	(d) a<1					
4.	Convolution in time domain	n is equal to	in frequency domain.						
	(a) addition	(b) multiplication	(c) compression	(d) expansion					
5.	. The phase factors are multiplied before the add and subtract operations in								
	(a) DIT Radix 2 FFT		(b) DIF Radix 2 FFT						
	(c) Inverse DFT		(d) Both (a) and (c)						
6.	Compute the X(0) of the set	quence $x(n) = \{1, 0, 1\}$	$\{0, 1, 0, 1, 0\}$						
	(a) 8	(b) 4	(c) 2	(d) 1					
7.	The condition for linear phase characteristic in FIR filter is, the impulse $h(n)=$								
	(a) $h(n+N-1)$	(b) h(N+1-n)	(c) $h(N-1-n)$ (c)	l) h(n-N-1)					

8. When s=_____ LPF is converted to HPF in analog domain.

(a)
$$\frac{s}{\Omega_c}$$
 (b) $\frac{\Omega_c}{s}$ (c) $s\Omega_c$ (d) s^2

- 9. The pipeline depth of TMS320C50 is
 - (a) 6 (b) 4 (c) 2 (d) 0
- 10. The function of wait-state generator is
 - (a) To insert wait-state in internal and external bus cycles
 - (b) To insert wait-state in data memory cycles
 - (c) To insert wait-state in program memory cycles
 - (d) To insert wait-state in external bus cycles

$$PART - B$$
 (3 x 8= 24 Marks)

(Answer any three of the following questions)

- 11. Explain the process of reconstruction of the signal from its samples with expression. (8)
- 12. Discover the general solution of the difference equation y(n) = x(n) 3y(n-1)with initial condition y(-1) = 0 and input $x(n) = n^2 + n$. (8)
- 13. Compute the eight-point DFT of the sequence $x(n) = \{n + 1\}$, Using the radix-2 decimation-in-time algorithm. (8)
- 14. Design a low pass filter using rectangular window by taking 9 samples of W(n) and with a cutoff frequency of 1.2 *rad*/*sec*. (8)
- 15. Explain the architecture of TMS320C50 with a neat diagram. (8)