Reg. No.:					

Question Paper Code: 37403

B.E. / B.Tech. DEGREE EXAMINATION, DEC 2020

Seventh Semester

Electronics and Communication Engineering

01UEC703 - MICROWAVE ENGINEERING

(Regulation 2013)

Duration: One hour Maximum: 30 Marks

PART A - $(6 \times 1 = 6 \text{ Marks})$

(Answer any six of the following questions)

- 1. To couple two waveguides a choke flange may be used
 - (a) As it is simpler than any other method of joining
 - (b) To help the alignment of the waveguides
 - (c) To compensate for discontinuities at the joint
 - (d) T increase the bandwidth of the system
- 2. The waveguide tuning component, which is not easily adjustable is,
 - (a) Screw (b) Iris (c) Stub
- (d) Plunger
- 3. TRAPATT diode is preferred over IMPATT diode because of
 - (a) High η

- (b) Less sensitivity to harmonics
- (c) Lower noise
- (d) Ability to operate at higher frequencies
- 4. Two entities that are combined to form a Magic Tee are
 - (a) One H and one E plane tee
- (b) One Hand two E plane tees
- (c) Two Hand two plane tees
- (d) Two H and one E plane tee
- 5. The efficiency (η) of the klystron can be calculated as
 - (a) $\eta = P_{ac} + P_{dc}$
- (b) $\eta = P_{ac} + P_{dc}$
- (c) $\eta = P_{ac} P_{dc}$
- (d) $\eta = P_{ac}/P_{dc}$

6.7.	The microwave tube ample (a) Reflex klystron (c) Coaxial magnetron The fabrication of microst		(b)	magnetic field and CFA Travelling wave r		e field is			
	(a) Photo etching(c) Oxidation			(b) Printed circuit technique(d) Cladding					
8.	Processing in MMICs is de	one by							
	(a) Ion implantation(c) Floor planning			(b) Net list generation(d) None of the above					
9.	A loss less line of characteristics reactance of $-jZ_0$ value.	-	$z Z_0$	is terminated in pu	re				
	(a) 10 (b) 2	(c)	Infi	nity	(d) 1				
10.	The reflection coefficient	on a line is 0.2∠4	5 ⁰ .T	he SWR is					
	(a) 0.8 (b) 1.1	((c) 1.2	(d) 1.5				
		PART – B (3 x 8	3=24	4 Marks)					
	(Answe	er any three of the	foll	lowing questions)					
11.	11. Derive the S- parameter of Magic Tee.								
12.	Compare the characteristic	es of IMPATT, BA	RIT	T and TRAPATT	diode.	(8)			
13.	Explain the velocity mod bunching occurs in tw	-	nd d	erive the conditio	n at which n	maximum (8)			
14.	Explain in detail with suita	able diagrams, the	fabri	ication techniques	of a monolith	ic			
	microwave integrated of	circuit.				(8)			
15.	5. Explain in detail various power measurement techniques.								