Reg. No.:					

Question Paper Code: 37402

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2019

Seventh Semester

Electronics and Communication Engineering

01UEC702 - OPTICAL COMMUNICATION AND NETWORKS

(Regulation 2013)

Duration: One hour Maximum: 30 Marks

PART A -
$$(6 \times 1 = 6 \text{ Marks})$$

(Answer any six of the following questions)

Snei	ĽS	law	18
	Snei	Snell's	Snell's law

(a) $n_1 \sin \varphi_1 = n_2 \sin \varphi_2$

(b) $n_1 \cos \varphi_1 = n_2 \cos \varphi_2$

(c) $n_1 \tan \varphi_1 = n_2 \tan \varphi_2$

- (d) $n_1 \cot \varphi_1 = n_2 \cot \varphi_2$
- 2. The cutoff normalized frequency of single mode fiber is
 - (a) $V_{C} = 2.504$

(b) $V_{C} = 2.045$

(c) $V_{C} = 2.450$

(d) $V_{C} = 2.405$

- 3. Scattering loss occurs due to
 - (a) Microscopic variations

(b) Compositional fluctuations

(c) Semi-permanent joint

(d) All of the above

- 4. Fiber splicing is a type of
 - (a) Temporary joint

(b) Permanent joint

(c) Semi-permanent joint

- (d) None of the above
- 5. Single mode laser sources are used for
 - (a) Short distance communication
- (b) Medium distance communication
- (c) Long distance communication
- (d) All of the above

6. KA	APD 18				
	(a) Rise through avalanche photo diode (b) Repear	Repeat through avalanche photo diode			
	(c) Reach through avalanche photo diode (d) Reduc	e through avalanche photo diod	le		
7. Th	ne advantages of preamplifier is				
	(a) Low bandwidth (b) High bandwidth (c) Low g	ain (d) Low dynamic range			
8. A c	common method for determining the total fiber attenu	ation per unit length is			
	(a) Interferometric method (b) Cut-back	k method			
	(c) Time domain method (d) Freque	(d) Frequency domain method			
	he transfer of information from source to destination to odes is	hrough a series of intermediate			
10. T	(a) Topology (b) Routing (c) Switching The non linearity of a propagating signal in carrier indu	• • • • • • • • • • • • • • • • • • • •	l		
	(a) Kerr effect (b) chirp effect	(b) chirp effect			
		phase effect			
	$PART - B (3 \times 8 = 24 Mar)$	ks)			
	(Answer any three of the followin	g questions)			
11.	Explain acceptance angle and Numerical Aperture of fibers.				
12.	Explain the causes and types of fiber attenuation loss with necessary diagrams.				
13.	13. What are the possible noise sources that contribute the photo detector noise.				
14.	Explain the fundamental receiver operation in optical communication link.				

Explain in detail SONET layers and frame structure with diagram.

15.

(8)