	Reg	g. No. :											
				_									
	Question I	Paper Coo	le: 44403										
B.E. / B.Tech. DEGREE EXAMINATION, DEC 2020													
	Fourth Semester												
Electronics and Communication Engineering													
14UEC403 - ELECTROMAGNETIC FIELDS													
	(1	Regulation 2	014)										
D	uration: 1:15hrs		Max	ximum	: 30	Marl	ks						
	PART	A - (6 x 1 =	6 Marks)										
	(Answer any s	six of the fol	lowing questi	ions)									
1.	A field F is said to be SOLENOID.	AL if											
	(a) CURL F=0 (b) D1	IV F=0	(c) $\nabla^2 F = 0$	0	(d)∫	F.dl	= 0						
2.	Two Positive charges Q Coulomb each are placed at points $(0, 0, 0)$ and $(2, 2, 0)$, while two negative charges Q Coulomb each in magnitude are placed at points $(0, 2, 0)$ and $(2, 0, 0)$. The electric field at point $(1, 1, 0)$ is												
	(a) Zero (b) $\frac{Q}{8\pi}$	<u>9</u> 80	$(c)\frac{Q}{4\pi\epsilon_0}$		(d) $\frac{1}{16}$	Q 6πε0							
3.	The Magnetic field at any point on	ing circi	ular co	il wil	l be								
	(a) Perpendicular to the axis(c) At an angle of 45 degree w	ith the axis	(b) Parallel to the axis(d) Zero										

- 4. The Magnetic field at any point on the axis of a current carrying circular coil will be
 - (a) Perpendicular to the axis

(b) Parallel to the axis

(c) At an angle of 45 degree with the axis

(d) Zero

5. Point form of Ohm's law is

(a)
$$\vec{E} = \sigma \vec{J}$$
 (b) $\vec{J} = \sigma \vec{E}$

(b)
$$\vec{J} = \sigma \vec{E}$$

(c)
$$\vec{E} = \vec{J}$$

(c)
$$\vec{E} = \vec{J}$$
 (d) $\vec{E} = \frac{\sigma}{\vec{J}}$

6.	In a dielectric-conductor boundary, the tangential component of electric field is								
	(a) E _i	(b) 2E _i	(c) 0	(d) Infinity				
7.	The Coefficient of coupling between two coils								
	(a) Orientation of the coils(c) Number of turns on the two coils current			(b) Current nt (d) Self-inductance of the two coils					
8.	Give the equation of power flow in coaxial cable								
	(a) Poynting Vector(c) Radial Vector			(b) Scalar Vector(d) none of these					
9.	In a good conduct	tor E/H ratio is							
	-	se of 45 degree levance,(i.e) E is indepe	ndent of I	H					
10.	Skin depth is prop	portional to							
	(a) Frequency	(b) permeability	(c) $\sqrt{\sigma}$	(d) $1/\sqrt{\sigma}$				
		PART – B (3	x 8= 24 N	Marks)					
		(Answer any three of	the follow	ving questi	ons)				
11.	Determine the electric field intensity of an infinitely long, straight, line charge of a uniform density ρ_L in air. (8)								
12.	Find the magnetic flux density around infinitely long straight conductor using Bio-Savart law. (8)								
13.	A cylindrical capacitor consists of an inner conductor of radius 'a' and an outer conductor whose inner radius is 'b'. The space between the conductor is filled with a dielectric of permittivity ε , and the length of the capacitor is L . Determine the capacitance of this capacitor. (8)								
14.	Derive the Poynting vector from Maxwell's equations and explain power of flow. (8)								
15	Define Brews	ster angle. Derive the wa	ive equati	on in free s	nace condition	(8)			