Question Paper Code: 34403

B.E. / B.Tech. DEGREE EXAMINATION, DEC 2020

Fourth Semester

Electronics and Communication Engineering

01UEC403 - ELECTROMAGNETIC FIELDS

(Regulation 2013)

Duration: One hour

2.

3.

4.

5.

Maximum: 30 Marks

PART A - $(6 \times 1 = 6 \text{ Marks})$

(Answer any six of the following questions)

1. A field F is said to be SOLENOIDAL if

(a) CURL F=0	(b) DIV F=0	(c) $\nabla^2 F = 0$	$(\mathbf{d})\int \mathbf{F}.\mathbf{d}\mathbf{l}=0$	
Discuss-Charged line				
(a) infinitesimal charge elements(c) Supreme Charged elements		(b) Enlarged charge elements(d) None of the above		
What is magnetic flux de	ic flux density?			
(a) Magnetic field		(b) Magneti	etic Induction	
(c) Electric Intensity		(d) None of	these	
Give the lorentz force eq	uation			
(a) F=qE+qvxB		(b) F=Eq+B	3	
(c) $F=B+Qx$		(d) none of	these	
What is point form of Ol	ım's law			
(a) Two points direct	ctly proportional	(b) Both on san	ne directions	
	4 1:	(1)		

(c) Both are different directions (d) none of these

6.	Define electric density				
	(a) Electric field		(b) Non Electric Field		
	(c) Magnetic Field		(d) none of these		
7.	Discuss Faraday's law				
	(a) Non Magnetic Field		(b) Electromagnetic Induction		
	(c) Electric Field		(d) none of these		
8.	Unit of Poynting vector is				
	(a) VA/m ((b) VA	(c) VA/m^2	(d) Watt/m	
9.	What is skin effect?				
	(a) High Frequency AC(c) Very Low Frequency AC		(b) Low frequency AC		
			(d) none of these		
10.	Conductivity of perfect di	electric is			

(a) unity (b) 0.5 (c) $\frac{1}{\sqrt{2}}$ (d) zero

PART - B (3 x 8= 24 Marks)

(Answer any three of the following questions)

- 11. Develop an expression for an electric field due to an infinite sheet of charge having uniform charge density $\rho_s C/m^2$, placed in xy plane cut a point P on z-axis at a distance of 'z' m from the origin. (8)
- 12. Derive the expression for torque developed in a rectangular closed circuit carrying current I in a uniform field. (8)
- 13. Derive the boundary conditions of the normal and tangential components of magnetic field at the inter face of two media with different dielectrics. (8)
- 14. State Ampere's circuital law and prove the modified form of Ampere's circuital law as Maxwell's first equation in integral form. (8)
- Derive the electromagnetic wave equations in frequency domain and obtain the expressions for intrinsic impedance and propagation constant for free space, conductor and dielectric medium.
 (8)