		Questio	n Pape	er Code: 55	5401						
B.E. / B.Tech. DEGREE EXAMINATION, DEC 2020											
Fifth Semester											
Electronics and Communication Engineering											
15UEC501 - DIGITAL SIGNAL PROCESSING											
		(R	egulation	n 2015)							
Duration: One hour				Maximum: 30 Marks							
PART A - $(6 \times 1 = 6 \text{ Marks})$											
(Answer any six of the following questions)											
1.	In an N point DFT of a finite duration sequence x(n) of length, the value of N should be such that						CO1-R				
	(a) N> L	(b) N≥ L		(c) N <l< td=""><td></td><td>(d) N≤L</td><td></td></l<>		(d) N≤L					
2.	. If x(n) is a real sequence and X(k) is its N-point DFT, then which of the following is true?										
	(a) $X(N-k)=X(-k)$)		(b) X(N-k)=	X*(k)						
	(c) $X(-k)=X^*(k)$			(d) All of the	e above						
3.	The poles of Butt	erworth filter lies o	n				CO2-R				
	(a) Sphere	(b) Circle		(c) Ellipse		(d) Parabola					
4.	A causal and stab	le IIR filter has					CO2-R				
	(a) Linear phase	(b) No Linear	r phase	(c) Linear ar	nplitude	(d) No Ampl	itude				
5.	The frequency res	sponse of a digital f	ïlter is pe	eriodic in the r	range		CO3-R				
	(a) $0 < \omega < 2\pi$	(b) - $\pi < \omega < \pi$	(c) 0	$< \omega < \pi$	$(d)0 < \alpha$	$0 < 2\pi \text{ or } -\pi < 0$	ω< π				
6. Symmetric impulse response having odd number of samples, N=7 with centre of symmetry α is equal to							CO3-R				
	(a) 2	(b) 5		(c) 3.5		(d) 3					
7.	In Quantization quantization step	to b-bits(excluding size q is	sign bit), if R is the	range, th	en	CO4-R				

(b) $R/2^{b+1}$ (c) $R/2^{b-1}$ (d) $R 2^{b+1}$

(a) R/2^b

Reg. No.:

	truncation then truncation error is,											
	(a) N _t - N	(b) N - N _t	$(c)(N_t - N) / 2$		(d) $(N_t + N) / 2$							
9.	The total memory space of TMS320C5x family of processors is, CO5-A											
	(a) 224k-words	(b) 224k-bytes	(c) 192k-word	ds (d) 192k-by	tes						
10.	•	cessors, the maximum n be defined in a progra		ndependent	(CO5-App						
	(a) 1	(b) 2	(c) 3	(d) 4							
	PART - B (3 x $8 = 24$ Marks)											
	(Answer any three of the following questions)											
11.	Determine the FFT $x(n) = \{2,2,2,2,1,1,1,1\}$ the result.	Using DIT alg Analyze the same with		· ·		pp (8)						
12.	For the analog transfer function $Ha(s)=(s^2+1)/(s^2+2s+1)$ determine $H(z)$ CO2- App using Impulse invariant transformation with $T=1$ sec.											
13.	Design an Ideal LPF w	vith frequency response			CO3- A	na (8)						
	$H_d(e^{jw}) = 1$, for $-\pi/2 < =$	$= \omega <= \pi/2$										
	=0, for other	erwise.										
	Using Rectangular window for N=7 samples.											
14.	system described by th	etics of limit cycle oscillate difference equation:	y(n) = 0.95 y(n)	(n-1) + x (n).	CO4- A	pp (8)						
15.	With a neat function TMS320C5X processor	nal block diagram, ex or and explain	plain the arc	hitecture of	CO5- U	(8)						

8. If N is unquantized number and N_t is the number quantized by

CO4-R