Question Paper Code: 45404

B.E. / B.Tech. DEGREE EXAMINATION, DEC 2020

Fifth Semester

Electronics and Communication Engineering

14UEC504 - TRANSMISSION LINES AND WAVEGUIDES

(Regulation 2014)

(Smith chart may be permitted)

Duration: One hour

Maximum: 30 Marks

```
PART A - (6 \times 1 = 6 \text{ Marks})
```

(Answer any six of the following questions)

1. Which stands for *dB* relative level?

(a) <i>dBrn</i>	(b) <i>dBa</i>	(c) dBr	(d) dBx

2. One decibel equals to

(a) 5.356N (b) 8.686N (c) 7.635N (d) None of these

3. A transmission line is terminated in a load equal to its characteristic impedance. The reflection coefficient is

(a) plus one (b) minus one (c) zero (d) infinity

4. A <u>band</u> is the range of frequencies or wavelengths that can pass through a filter without being attenuated.

(a) Pass (b)Band (c) Base (d) Low

- 5. Reflection Coefficient K=____Voltage at load /Incident voltage at the load.
 - (a) Reflected (b) Incident (c) Reflection (d) Inflection

6.	The distance the wave travels along the line while the phase angle is changing throu radians is called a wavelength.							
	(a) 1	(b) 2	(c) 2.5	(d) 1.5				
7.	. Assumptions for the analysis of the performance of the radio frequency Line, leakage conductance G is							
	(a) 0.5	(b) 0	(c) 2.5	(d) 1.5				
8.	3. Dominant mode means							
	(a) highest cut-off frequency(c) guide wavelength		(b) lowest (d) lowest	(b) lowest cut-off wavelength(d) lowest cut-off frequency				
9.	Dominant mode in circular cavity resonator is							
	(a) TM ₀₁₀	(b) TM ₁₁	1	(c) TM ₁₀₁	(d) TM ₁₀₀			
10.	Principal mode is							
	(a) TE mode	(b) TM 1	node	(c) TEM mode	(d) None			
PART - B (3 x $8 = 24$ Marks)								

(Answer any three of the following questions)

- 11. Design a T-type prototype band pass filter.
- 12. A transmission line has the following primary constants measured per km, $R = 10.15 \ \Omega$, $L = 3.93 \ mH$, $C = 0.00797\mu F$, $G = 0.29\mu mho$. Determine Z_0 and propagation constant at a frequency of $796H_z$. Also calculate at the sending end if the line is terminated in its characteristic impedance. (8)
- 13. Derive the expression for the field strength for TM waves between Parallel plates propagating in Z direction. (8)
- 14. Derive the field component of the wave propagating between parallel planes. (8)
- 15. Obtain the electromagnetic field equations for TE waves in rectangular waveguides. (8)

(8)

#