		Reg. No. :										
		Question Pa	per Co	ode: 594	404							
B.E. / B.Tech. DEGREE EXAMINATION, DEC 2020												
Elective												
Electronics and Communication Engineering												
15UEC904–LINEAR CONTROL ENGINEERING												
(Regulation 2015)												
Dur	ation: 1.15 hrs	Maximum: 30 Marks										
PART A - (6 x 1 = 6 Marks)												
(Answer any six of the following questions)												
1.	In closed loop con gain of the system	trol system, with posit	ive value	e of feedb	oack gair	the	overa	all	C	D1- R		
	(a)increase	(b)decrease	(c) b	e unaffec	ted	(d)any	of th	ne abo	ove		
2.	Loop which do no	t possess any common	node are	e said to b	be		1	oops.	C	01- R		
	(a) Forward gain (b) Touching loops											
	(c) Non touching	loops (d) Feedback gain.										
3.	The type 0 system has at the origin							(CO2-U			
	(a) no pole		(b) r	net pole								
	(c) simple pole (d) none of the above											
4.	The damping ratio	The damping ratio and peak overshoot are measures of:						(CO2- R			
	(a) Relative stabil	lity	(b) Speed of response									
	(c) Steady state er	(d) Absolute stability										
5.	By equating the following will be	By equating the denominator of transfer function to zero, which among the CO3-R ollowing will be obtained?										
	(a) Poles (b) Zeros											
	(c) Both a and b		(d) None of the above									
6.	If the system is remagnitude at $w=\infty$	presented by $G(s)$ $H(s)$	k(s+2) = k(s+2)	7)/s(s+3)((s+2), w	hat v	voulc	l be i	its (203-U		
	(a) 0 (t) ∞	(c) 7/1	0		(d)	21					
7.	Technique gives quick transient and stability response							(CO4 R			
	(a) Root locus	(b) Bode		(c) Nyqu	uist		(d)	Nich	ols			

8.	A conditionally stable system exhibits poor stability at								
	(a) Low frequencies	es	(b) reduced values of c	pen loop gain					
	(c) Increased value	s of open loop gain	(d) None of the above						
9.	State space analysis is applicable even if the initial conditions are								
	(a) Zero		(b) Non-zero						
	(c) Equal		(d) Not equal						
10.	According to the property of state transition method, e0 is equal to								
	(a) I	(b) A	(c) e^{-At}	$(d) - e^{At}$					
$PART - B (3 \times 8 = 24 \text{ Marks})$									

(Answer any three of the following questions)

16. (a) Estimate the overall transfer function of the system shown in the CO1- App (8) fig.

- 17. (a) A unity feedback control system has an open loop transfer CO2-App (8) function G(S) = 10/s(s+2). Find the rise time, percentage over shoot, peak time and settling time.
- 18. (a) Consider a unity feedback system having an open loop transfer CO3-Ana (8) function $G(s) = \frac{K}{s(s+0.5s)(1+4s)}$

Outline the polar plot and determine the value of K so that

(i) Gain margin is 20db

(ii) Phase margin is 30° .

19. (a) Discuss the stability of a system with characteristics equation CO4-App (8) $s^4+s^3+20s^2+9s+100=0$

Using Routh Hurwitz criterion

20. (a) Develop the Transfer function of the matrix from the data given CO5-Ana (8) below.

$$A = \begin{bmatrix} -3 & 1 \\ 0 & -1 \end{bmatrix}; B = \begin{bmatrix} 1 \\ 1 \end{bmatrix}; C = \begin{bmatrix} 1 & 2 \end{bmatrix} \text{ and } D = 0. \text{ Also analyze}$$

the stability condition of the system.