Reg. No. :										
------------	--	--	--	--	--	--	--	--	--	--

Question Paper Code: 49403

B.E. / B.Tech. DEGREE EXAMINATION, DEC 2020

Elective

Electronics and Communication Engineering

14UEC903 - COMPUTER ARCHITECTURE AND ORGANIZATION

(Regulation 2014)

Duration: 1.15 hrs Maximum: 30 Marks

PART A - $(6 \times 1 = 6 \text{ Marks})$

		(
	(Answer any six o	of the following questions)					
1.	ne addressing mode which makes use of in-direction pointers is						
	(a) Indirect addressing mode	(b) Index addressing mode					
	(c) Relative addressing mode	(d) Offset addressing mode					
2. Floating point representation is used to store							
	(a) boolean values(c) real integers	(b) whole numbers(d) integers					
3.	. In computers, subtraction is generally carried out by						
	(a) 9's complement(c) 1's complement	(b) 10's complement(d) 2's complement					
4.	Pipeline implement						
	(a) fetch instruction(c) fetch operand	(b) decode instruction(d) calculate operand					
5.	CPU does not perform the operation						
	(a) data transfer	(b) logic operation					
	(c) arithmetic operation	(d) all the above					

6.	A micro program written as string of 0's	and 1's is a					
	(a) symbolic microinstruction	(b) binary microinstruction					
	(c) symbolic micro program	(d) binary micro program					
7.	The techniques which move the progradled as	ram blocks to or from the physical memory i	is				
	(a) Paging(c) Overlays	(b) Virtual memory organization(d) Framing					
8.	The associatively mapped virtual memor	ry makes use of					
	(a) Translation Look-aside Buffer	(b) Page table	(b) Page table				
	(c) Frame table	(d) None of these					
9.	The computer architecture aimed at redu	acing the time of execution of instructions is					
	(a) CISC (b) RISC	(c) ISA (d) ANNA					
10.	Interrupts which are initiated by an instru	uction are					
	(a) internal (b) external	(c) hardware (d) software					
	PART – B (3	3 x 8= 24 Marks)					
	(Answer any three of	f the following questions)					
11.	What are the different types of CPU	U organization? Explain with relevant examples (8)					
12.	With relevant diagram and express adder.	sions, explain the operation of carry look ahea (8)					
13.	Explain the design of micro program	nmed control unit with relevant diagram. (8)	!				
14	Explain preemptive and non-preemp	otive memory allocation strategies in detail. (8)					
15	Explain the IOB organization and co	ommunication between CPU and IOB. (8)	į				