Reg. No. :

Question Paper Code: 39410

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2019

Elective

Electronics and Communication Engineering

01UEC910 - DIGITAL IMAGE PROCESSING

(Regulation 2013)

Duration: 1.15 hrs

Maximum: 30 Marks

PART A - $(6 \times 1 = 6 \text{ Marks})$

(Answer any six of the following questions)

1. A	mount of energy that	t flows from the ligh	it source	is			
	(a) Brightness	(b) Radiar	ice	(c) Luminance	(d) Reflectance		
2. Iı	ntensity levels in 8-b	it image are					
	(a) 128	(b) 255		(c) 256	(d) 512		
3. Sı	moothing filters are 1	nostly used in					
	(a) Blurring	(b) Noise re	duction	(c) Contrast	(d) A and B		
4. T	he method used to ge	enerate a processed i	mage th	at has a constant his	stogram is called		
	(a)Histogram enhancement(c) Histogram normalization		(b) Histo	ogram matching			
			(d) Histo	ogram equalization			
5. Image restoration and image enhancement is performed in							
	ime						
	(c) Only frequency domain		(d) Only spatial domain				
6.	Minimum mean square error filter is otherwise called as						
	(a) Low pass filter	(b) High pass filter		(c) Inverse filter	(d) Least square filter		

7	Canny edge detacher i	c							
/.	Canny cuge detacher i	5							
	(a) Isotropic defector		(b) Non isotropic defector						
	(c) Does not produce l	ong thin contours	(d) Uses the second derivative						
8. Gradient computation is more useful in									
	(a) Point detection	(b) Edge detectio	n (c) Area detection	(d) Line detection					
9. The Hit-or-Miss transformation is used for shape									
	(a) Removal	(b) detection	(c) Compression	(d) Decompression					
10.	Third moment is defined as the meaner of								
	(a) Flatness		(b) Skewness						
	(c) Sharpness		(d) Variability of the image						
PART – B (3 x 8= 24 Marks)									
(Answer any three of the following questions)									
11.	Explain in detail elements of visual perception								
12.	Define 2D DFT pair and discuss any three properties of it.								
13.	3. Give an algorithm for obtaining the average of four images of same size and								
	explain it.			(8)					

- 14. How do you link pixels through global processing ? How do you perform edge detection? Give suitable algorithm and discuss how the edge points are linked. (8)
- 15. Formulate the Chain codes & Skeletons. (8)