Reg. No.:					

Question Paper Code: 39403

B.E. / B.Tech. DEGREE EXAMINATION, DEC 2020

Elective

Electronics and Communication Engineering

01UEC903 - COMPUTER ARCHITECTURE AND ORGANIZATION

(Regulation 2013)

Duration: 1.15 hrs Maximum: 30 Marks

PART A - $(6 \times 1 = 6 \text{ Marks})$

	(Answer any six o	(Answer any six of the following questions)						
1.	The addressing mode which makes use of in-direction pointers is							
	(a) Indirect addressing mode	(b) Index addressing mode						
	(c) Relative addressing mode	(d) Offset addressing mode						
2.	Floating point representation is used to	store						
	(a) boolean values(c) real integers	(b) whole numbers(d) integers						
3. In computers, subtraction is generally carried out by								
	(a) 9's complement	(b) 10's complement						
	(c) 1's complement	(d) 2's complement						
4.	Pipeline implement							
	(a) fetch instruction(c) fetch operand	(b) decode instruction(d) calculate operand						
5.	CPU does not perform the operation							
	(a) data transfer	(b) logic operation						
	(c) arithmetic operation	(d) all the above						

6.	A micro program written as string of	0's and 1's is a						
	(a) symbolic microinstruction	(b) binary microinstruction	(b) binary microinstruction					
	(c) symbolic micro program	(d) binary micro program	(d) binary micro program					
7.	The techniques which move the procalled as	ogram blocks to or from the physical memory	is					
	(a) Paging(c) Overlays	(b) Virtual memory organization(d) Framing						
8.	The associatively mapped virtual men	nory makes use of						
	(a) Translation Look-aside Buffe	r (b) Page table						
	(c) Frame table	(d) None of these	(d) None of these					
9.	The computer architecture aimed at r	educing the time of execution of instructions is						
	(a) CISC (b) RISC	(c) ISA (d) ANNA						
10.	Interrupts which are initiated by an ir	astruction are						
	(a) internal (b) external	(c) hardware (d) software						
	PART –	B (3 x 8= 24 Marks)						
	(Answer any three	e of the following questions)						
11.	Explain zero, one, two and three	addressing instructions with example. (8))					
12.	With a neat block diagram explain	n in detail about CPU-coprocessor interfacing. (8))					
13.	Explain the design of micro-pr multiplier with a diagram.	ogrammed control unit for the two's compleme (8)						
14.	Design the following RAM using	N x w bit IC RAM.						
	(1) N x 4w bit RAM							
	(2) $4N \times w \text{ bit RAM}$	(8))					
15.	With a diagram explain stati tolerant system.	c and dynamic redundancy for designing fat (8)						