Question Paper Code: 33506

B.E. / B.Tech. DEGREE EXAMINATION, DEC 2020

Third Semester

Electronics and Instrumentation Engineering

01UEI306 – DIGITAL ELECTRONICS

(Regulation 2013)

Duration: 1.15 hrs

Maximum: 30 Marks

PART A - $(6 \times 1 = 6 \text{ Marks})$

(Answer any six of the following questions)

1. How is a *J*-*K* flip-flop made to toggle?

(a) J = 0, K = 0 (b) J = 1, K = 0 (c) J = 0, K = 1 (d) J = 1, K = 1

- 2. Which of the following is correct for a gated D flip-flop?
 - (a) The output toggles if one of the inputs is held high
 - (b) Only one of the inputs can be high at a time
 - (c) The output complement follows the input when enabled
 - (d) Q output follows the input D when the enable is high
- 3. A comparator is a special combinational circuit designed primarily to compare the relative magnitude of ______ numbers .

(a) two decimal	(b) three decimal	(c) two binary	(d) three binary
-----------------	-------------------	----------------	------------------

4. The systematic reduction of logic circuits is accomplished by

(a) using Boolean algebra	(b) symbolic reduction
(c) TTL logic	(d) using a truth table

- 5. How is a J-K flip-flop made to toggle?
 - (a) J = 0, K = 0 (b) J = 1, K = 0 (c) J = 0, K = 1 (d) J = 1, K = 1
- 6. What is a major disadvantage of RAM?
 - (a) Its access speed is too slow
 - (c) It is volatile (d) High power consumption

(b) Its matrix size is too big

_					
7.	Race in which stable state depend	s on order is called			
	(a) critical race	(b) identical race			
	(c) non critical race	(d) defined race			
8.	n design procedure of asynchronous circuit flow table is				
	(a) increased to max states	(b) reduced to min states			
	(c) changed	(d) remain same			
9.	array and a fixed array with output logic.				
	(a) NAND and NOR	(b) AND and NOR			
	(c) NAND and OR	(d) AND and OR			
10.	is the minimum ti	me required to maintain a constant voltage levels at the			
	excitation inputs of the flip-flop d	evice.			
	(a) Rise time	(b) Fall time			
	(c) Setup time	(d) None of these			
	PART	$T - B (3 \times 8 = 24 \text{ Marks})$			
	(Answer any t	hree of the following questions)			
11.	Compute the minimized Boolean expression using K-map				
	F = A'BC'D'+A'BC'D+ABC'	C'D' + AB'C'D + A'B'CD' (8)			

12. Design a combinational logic using a suitable multiplexer to realize the Boolean expression: F = AD'+B'C+BC'D. (8)

- 13. Design a mod-7 synchronous binary counter using JK flip-flops. (8)
- 14. Design a asynchronous sequential circuit specified by the following flow table. (8)

	00	01	10	10
A	A.0	A.0	A.0	B.0
в	A,0	A.0	B.1	B.1

15. Implement the BCD to XS3 code conversion using ROM. (8)