Reg. No.:					

Question Paper Code: 55505

B.E. / B.Tech. DEGREE EXAMINATION, DEC 2020

Fifth Semester

Electronics and Instrumentation Engineering

(Common to Instrumentation and Control Engineering)

01UEI505 - ANALYTICAL INSTRUMENTS

(Regulation 2013)

Duration: 1:15hrs				Maximum: 30 Marks			
		PART A - (6 x	1 = 6 Marks)				
	(A)	nswer any six of the	following questions)				
1.	The units of an IR spectrometer on the X-axis is						
	(a) meter	(b) centimeter	(c) per meter	(d) per centimeter			
2.	Wave number of near i	nfrared spectrometer	is				
	(a) 12500 - 4000	(b) 4000 - 200	(c) 200 - 10	(d) 200 - 20			
3.	If the concentration of solution increases, then the absorption						
	(a) remains same	(b) decreases	(c) increases	(d) unpredictable			
4.	In gas chromatography is the difference in	, the basis for separati	ion of the components	s of the volatile material			
	(a) partition coefficients		(b) conductivity	•			
_	(c) molecular weig		(d) molarity				
5.	Which gas has high thermal conductivity?						
	(a) Nitrogen		(b) Hydrogen				
	(c) Helium		(d) Carbon dioxi	de			

6.	The principal source of volatile organics (Hy	drocarbons) is					
	(a) Transportation	(b) Industrial processes					
	(c) Stationary fuel combustion	(d) Volcanoes					
7.	7 is an electrode which responds to change in the activity of the ar						
	(a) Calomel electrode	(b) Hydrogen electrode					
	(c) Indicator electrode	(d) Ion selective electrode					
8.	If the pH value of the solution is 5, what will be the concentration of H+ ions						
	(a) 10-0.2 gm/lit	(b) -0.2 gm/lit					
	(c) 0.2 gm/lit	(d) 10-5 gm/lit					
9.	Scintillators are chemicals used to convert						
	(a) chemical energy to radiant energy	(b) radiant energy to light					
	(c) radiant energy to chemical energy	(d) light to radiant energy					
10.	The primary signal of an NMR spectrum is o	alled					
	(a) signal	(b) Fourier Transformation					
	(c) FID	(d) Laplace Transformation					
	PART - B (3 x 3)	8= 24 Marks)					
	(Answer any three of the	e following questions)					
11.	Illustrate the working principle of double beam IR spectrophotometers.						
12.	Describe the operation of flame ionization detector in detail. (8)						
13.	Summarize the working principle of any one type of Oxygen (O2) gas analyser. (
14.	With neat diagram, explain the cons analyzer.	truction and working of dissolved ox	xygen (8)				
15.	Explain the working of a Scanning Elect	ron Microscope (SEM) with neat sketch					
			(8)				