Reg. No. :										
------------	--	--	--	--	--	--	--	--	--	--

Question Paper Code: 53203

B.E. / B.Tech. DEGREE EXAMINATION, DEC 2020

Third Semester

Computer Science and Engineering

15UCS303 - COMPUTER ORGANIZATION AND ARCHITECTURE

(Common to Information Technology)

(Regulation 2015)

Duration: One hour

Maximum: 30 Marks

PART A - $(6 \times 1 = 6 \text{ Marks})$

(Answer any six of the following questions)

1.	Component of CPU which is responsible for comparing contents of two pieces of data is					
	(a) ALU	(b)CU	(c) Memory	(d) Register		
2.	The two phases of exec	cuting an instruction are			CO1- R	
	(a) Instruction decoding	and storage				
	(b) Instruction fetch and	l instruction execution				
	(c) Instruction execution	n and storage				
	(d) Instruction fetch and	Instruction processing				
3.	CPU gets the address of next instruction to be processed from					
	(a) Instruction register		(b) Memor	y address register		
	(c) Index register		(d) Program	n counter		
4.	Floating-point numbers are normally a multiples of size of a				CO2-U	
	(a) Bit	(b) Nibble	(c) Word	(d) Byte		
5.	The addressing mode which makes use of in-direction pointers is					
	(a) Indirect addressing mode (c) Relative addressing mode					
	(b) Index addressing mo	ode	(d) Offset addı	essing mode		

6. The pipelining process is also called as _____

	(a) Superscalar operation	(c) Von Neumann cycle				
	(b) Assembly line operation	(d) None of the mentioned				
7.	Which among the following is the fastest cache mapping function?					
	(a) Fully associative mapping	(b) Set associative mapping				
	(c) Direct mapping	(d) None of the above				
8.	Larger page sizes leads to			CO4-U		
	(a) Transfer errors	(b) Increase in operation time				
	(c) Increase in access time	(d) Decrease in performance				
9.	In mode, the I/O module and without processor involvement.	main memory exchange data d	irectly,	CO4-U		
	(a) Programmed I/O (b) DMA	(c) Interrupt-driven I/O (d) A	All the ab	ove		
10	The number successful accesses to memory st as	ated as a fraction is called		CO4-U		
	(a) Access rate (b) Miss rate	(c) Success rate (d) Hit	t rate			
	PART - B (3)	3 x 8= 24 Marks)				
	(Answer any three of	the following questions)				
11.	Draw and explain block diagram of simple units.	computer with the functional	CO1- U	(8)		
12.	Illustrate Booth's algorithm with an example.		CO2-U	(8)		
13.	Explain the floating point Add/Subtract rul	es. With a detailed flowchart	CO2- U	(8)		

14. Draw and explain the simple combine data path for the MIPS architecture. CO3- U (8)

explain how floating point addition/subtraction is performed.

15. Explain the virtual memory address translation and TLB with necessary CO4- U (8) diagram.