Reg. No.:					

Question Paper Code: 53223

B.E. / B.Tech. DEGREE EXAMINATION, DEC 2020

Third Semester

	Electronics and Communication Engineering
	01UCS323 - DATA STRUCTURES AND ALGORITHM ANALYSIS
	(Regulation 2013)
	Duration: 1.15 hrs Maximum: 30 Marks
	PART A - $(6 \times 1 = 6 \text{ Marks})$
	(Answer any six of the following questions)
1.	For a method to be an interface between the outside world and a class, it has to be declared
	(a) Private (b) Public (c) Protected (d) Static
2.	In which case is it mandatory to provide a destructor in a class?
	(a) Almost in every class(b) Class for which two or more than two objects will be created(c) Class for which copy constructor is defined(d) Class whose objects will be created dynamically
3.	Assume that we have constructor functions for both base class and derived class. Now consider the declaration in main(). Base $*$ P = New Derived; in what sequence will the constructor be called
	(a) Derived class constructor followed by Base class constructor(b) Base class constructor followed by derived class constructor(c) Base class constructor will not be called(d) Base class constructor will not be called
4.	inheritance uses both multiple and multilevel inheritance

(b) Hybrid

(c) Single

(d) Multipath

(a) Hierarchial

5.	A heap is a								
	(a) Binary tree		(b) Full binary tree(d) Binary search tree						
	(c) Complete binary tree								
6.	the following which is open addressing hashing mechanism?								
	(a) Separate chaining	(b) De	(b) Double hashing						
	(c) Rehashing	(d) Extensible hashing							
7.	Binary tree has N number of nodes wit	th two ch	nildren. How 1	many leaf nodes are					
	available in a tree?								
	(a) $N+2$ (b) $N!$	(c) N-	+1	(d) $logN$					
8.	The classic example for NP-complete p	oroblem	is						
	(a) Dijikstra's algorithm	(b) Fl	(b) Floyds algorithm						
	(c) Travelling salesman problem	(d) No	(d) None of these						
9.	The complexity of multiplying two matrices of order m*n and n*p is								
	(a) mnp (b) mp		(c) mn	(d) np					
10.	Which sorting technique is the successor	or of Bu	cket sort?						
	(a) Insertion sort (b) Bubble	e sort	(c) Radix s	ort (d) Quick s	ort				
	PART – B	(3 x 8=	24 Marks)						
	(Answer any three	of the fo	ollowing ques	stions)					
11.	Design a matrix and vector classes to multiply vector and matrix class				program (8)				
12.	Explain exception handling mechan	Explain exception handling mechanism with an example. (8							
13.	Explain the various asymptotic notations used for calculating time and space complexities. (8								
14.	Briefly explain single rotation and double rotation of AVL tree with examples. (8)								
15.	Write the procedure for quick sort. Show the stepwise result of sorting the following								
	set of elements using quick sort: 23		-	_	(8)				