Reg. No.:					

Question Paper Code: 33203

B.E. / B.Tech. DEGREE EXAMINATION, DEC 2020

Third Semester

Computer Science and Engineering

01UCS303 - COMPUTER ORGANIZATION AND ARCHITECTURE

		(Regulation 2013)				
Duration: 1.15 hrs			Maximum: 30 Marks			
		PART A - $(6 \times 1) = 6 \text{ M}$	Iarks)			
	(Answ	er any six of the followi	ng questions)			
1.	Which of the following wou	ıld take less execution tir	ne?			
(a) Memory –Memory instruction(c) Register – memory instruction			(b) Register – Register instruction(d) Memory – register instruction			
2.	Add 20(R0,R1), R2 is an ex	xample of				
(a) Indirect addressing(c) Indexed Addressing			(b) Absolute addressing(d) Direct Addressing			
3.	Arithmetic Logic Unit (ALI	U) is used to perform				
	(a) addition	(b) left shift	(c) right shift	(d) all of these		
4.	The number of bits for expo	onent field in double prec	ision floating point	number is		
	(a) 8 bits	(b) 11 bits	(c) 20 bits	(d) 23 bits		
5.	The throughput of an ideal j	instruction/clock cycle				
	(a) <i>k</i>	(b) <i>k</i> -1	(c) 1	(d) 2		
6.	Which of the following MII	PS instruction takes more	execution time?			

(b) Store word(sw)

(c) R-format(add) (d) Branch(beq)

(a) Load word(lw)

7.	Multithreading an interactive program will increase responsiveness to the user by
	(a) continuing to run even if a part of it is blocked(b) waiting for one part to finish before the other begins(c) asking the user to decide the order of multithreading(d) None of these
8.	In a multithreaded environment
	(a) Each thread is allocated with new memory from main memory(b) Main thread terminates after the termination of child threads(c) Every process can have only one thread(d) No termination
9. T	The signal sent to the device from the processor to the device after receiving an Interrupt is
	(a) Interrupt-acknowledge(b) Return signal(c) Service signal(d) Permission signal
10.	The extra time needed to bring the data into memory in case of a miss is called as
	(a) Delay (b) Propagation time (c) Miss penalty (d) Data latency
	PART – B (3 x 8= 24 Marks)
	(Answer any three of the following questions)
11.	Explain the logical and control operations in MIPS assembly language in detail. (8)
12.	Explain the non–restoring and restoring division algorithms. Simulate the same for 23/5. (8)
13.	Describe in detail about pipeline processing. (8)
14.	Explain the Multiple-instruction multiple-data streams (MIMD) parallel architecture functions with suitable block diagram. (8)
15.	What are the types of implementation in virtual memory? Explain in detail the address translation mechanism of each of them. (8)