Reg. No.:					

Maximum: 30 Marks

above

CO3-U

Question Paper Code: 56201

B.E./B.Tech. DEGREE EXAMINATION, DEC 2020

Sixth Semester

Computer science and Engineering

15UCS601- PRINCIPLES OF COMPILER DESIGN

(Regulation 2015)

Duration: 1.15 hrs

(a) Ambiguous

(c) Complementary

		PART A - (6 ×	x 1 = 6 Marks			
		(Answer any six of the	e following questions)			
1.	A bottom up parser g	generates		CO1-R		
	(a) Right most deriva	ation	(b) Rightmost derivation	on in reverse		
	(c) Leftmost derivation	on	(d) Leftmost derivation in reverse			
2.	There are some Cont cannot be used. Why		which shift reduce parsis	ng CO1- R		
	(i) Cannot decide whether to shift or to reduce					
	(ii) Cannot decide wl	hich of several reduction	ons to make			
	(a) Only i	(b) only ii	(c) i and ii	(d) None of the above		
3. Which of the following is not a function of backpa			backpatching?	CO2-R		
	(a) Backpatch(p,i)	(b) Backpatch(i,p)	(c) Makelist(i)	(d) Merge(p1,p2)		
4.	•	e have been developed process a single input	to reduce the amount of character?	CO2- R		
	(i) Single Buffer Sch	eme				
	(ii) Two-Buffer Sche	eme				
	(a) Only i	(b) only ii	(c) i and ii	(d) None of the		

(b) Unambiguous

(d) Concatenation Intersection

Grammar that produce more than one Parse tree for same sentence is

6.	What are the functions used to manipulate list of jumps in One-Pass code generation using Backpatching?						
	(a) makelist(), merg	ge(), backpatch()	(b) makelist(), trai	nslate(), backpatch	()		
	(c) makelist(), back	patch()	(d) translate(), bac				
7.	Code optimizations are carried out on the intermediate code because						
	(a) Program is more accurately analyzed on intermediate code than on machine code						
	(b) Optimization information from data flow analysis cannot be used						
	(c) They enhance the portability of the compiler to the other target processor						
	(d) Optimization information from the front end cannot be used						
8.	In three-address coo	ght	CO4- R				
	(a) At most one	(b) At least one	(c) More than one	(d) None of the a	above		
9.	reduces the dimensions of an array and reduces the number of memory locations accessed CO5-R						
	(a) Locality of Com	nputed Data	(b) Array contraction				
	(c) Pipelining		(d) Communication Cost				
10.	What kind of information useful for locality optimization and parallelizing compiler?						
	(i) Data reuse						
	(ii) Data dependence	ee					
	(a) Only i	(b) only ii	(c) i and ii	(d) None of th	e above		
		PART – E	3 (3 x 8= 24 Marks)				
		(Answer any three	e of the following quest	ions)			
11.		-	piler. Translate the fobly code. $a := b + c * 6$		p (8)		
12.	Construct parse tre	ee for the input string	g w=id+id*id using top	o down CO2-An	a (8)		
	E->TE'						
	E'->+ΤΕ' ε						
	T->FT'						

 $T'->*FT'|\epsilon$

 $F \rightarrow (E)|id$

- 13. Explain the semantic actions required for translation of array reference. CO3-U (8)
- 14. Construct DAGs for the following basic blocks of TACs CO4 -Ana (8)

a = b + c; b = a - d; c = b + c; d = a - d;

15. Explain the principal sources of optimization techniques with suitable CO5-U examples (8)