Reg. No.:					

Question Paper Code: 93023

B.E. / B.Tech. DEGREE EXAMINATION, DEC 2020

Third Semester

Electronics and Communication Engineering

19UMA323 - : NUMERICAL ANALYSIS AND LINEAR ALGEBRA

(Statistical tables are may be permitted)

Dur	ation: One hour		Maxir	Maximum: 30 Marks			
		PART A - (6 x 1 = 6 Marks)				
		(Answer any six of	the following questions))			
1.	Trapezoidal rule is the sum of		pproximates the integral	by CO1- R			
	(a) n	(b) n+1	(c) n-1	(d) 2n			
2.	Truncation error is	n Simpson's rule is of t	he order	CO1- R			
	(a) h ³	(b) h ²	(c) h ⁴	(d) 0			
3.	Taylor Series methods RK, Milne's and A	•	to give some valu	es for CO2- R			
	(a) initial	(b) final	(c) intermediate	(d) two			
4.	In Euler's method	, if h is large then it giv	esvalue	CO2- R			
	(a) accurate	(b) inaccurate	(c) average	(d) None of these			
5.	PDE of second ord	$der, if B^2 - 4AC < 0 t$	hen	CO3- R			
	(a) parabolic	(b) elliptic	(c) hyperbolic	(d) Non homogeneous			
6.	PDE of second ord	$der, if B^2 - 4AC = 0 t$	hen	CO3- R			
	(a) parabolic	(b) elliptic	(c) hyperbolic	(d) None of these			
7.	The trivial subspa	ces of a vector space V	are	CO4- R			
	(a) {0}	(b) V	(c) W	(d) {0}and V			
8	If T· V→W he lir	near transformation the	n T(0) =	CO4- R			

(c) 2

(d) 3

(a) 0

(b) 1

9.	In a vector sapace V, if \(\langle \).	$\langle x, y \rangle = \langle y, z \rangle$ then	CO5- R
· ·	in a vector supace v, ii	$x, y/=\langle y, z/$ then	000 10

The norm of
$$(3, 4, 0)$$
 is

(c)
$$y = -z$$

(d) none of these

10. The norm of
$$(3,-4,0)$$
 is _____

CO5-R

(8)

(8)

(a) y = z

$$(b) -4$$

(b) $y \neq z$

$$PART - B$$
 (3 x 8= 24 Marks)

(Answer any three of the following questions)

11. Find the first and second derivatives of y at x = 1 from the following CO1- App data

X	1	2	3	4
У	1	8	27	64

- Using Taylor's series method find y(1.1) given y' = x + y with y(1) = 0
- CO2- App (8)
- Solve $\frac{\partial^2 u}{\partial x^2} = 2 \frac{\partial u}{\partial t}$, u(0,t) = 0, u(4,t) = 0, u(x,0) = x(4-x). Take h CO3- Ana (8)
 - = 1 and find the values of u up to t = 5 using Bender-Schmidt's difference equation
- Verify the vectors (1,2,0), (2,3,0), (8,13,0) in \mathbb{R}^3 is a basis of \mathbb{R}^3 CO₄- App
- Show that the following function defines an inner product on $V_2(R)$ CO5-U (8) where $x = (x_1, x_2)$ and $y = (y_1, y_2)$ and $\langle x, y \rangle = 6x_1y_1 + 7x_2y_2$