		Reg. No. :											
	[Question Paper	c C	ode	: 93	022							
B.E. / B.Tech. DEGREE EXAMINATION, DEC 2020													
	Third Semester												
		Computer Scien	nce	Engi	neeri	ing							
1	9UMA322 - PROBAE	BILITY, QUEUEING	THE	EOR	Y Al	ND	NU	MEI	RICA	AL M	ETH	łOD	S
	(Common to Information Technology branch)												
	(Regulation 2019)												
	(Statistical tables are may be permitted)												
Duration: One hour Maximum: 3							n: 30	Mar	ks				
PART A - $(6 \times 1 = 6 \text{ Marks})$													
	(Answer any six of the following questions)												
1.	Probability of an imp	ossible event is										CO	1- R
	(a) 1	(b) 10	(0	c) 0					((d) 10	00		
2.	The r th moment abou	t origin is										CO	1- R
	(a) $\mu(X)$	(b) $\mu(X^2)$	(0	c) µ	(X^r))			(2	(d) I abov	None e	e of	the
3.	In (M/M/1): (∞ / FCFS), Traffic intensity is								CO	2- R			
	a) $\frac{\lambda}{\mu}$	b) $\frac{\lambda}{c\mu}$		c	$\frac{c^{\prime}}{\mu}$	2 <u>.</u>				d) λ	μ		
4.	In (M/M/1) : (K / FCFS), The effective arrival rate is CO2-							2- R					
	(a) λ	(b) λ'	(0	c) μ'					($(d)^{\lambda \mu}$	u'		
5.	The linear law is											CO	3- R
	(a) Y=A+B	(b) Y=AX+B	((c) Y=	=A+l	BY			((d) Y	=X+	A	
6.	number of no method of least squar	ormal equations are re-	equi	red t	to fit	ap	parat	oola	in			CO	3- R
	(a) 1	(b) 2	(0	c) 3					((d) 4			

7.	Iteration method conv		CO4- R						
	(a) >1	(b) <1	(c)=0	(d) >0					
8.	Newton's method is a	lso called method of _			CO4- R				
	(a) tangents	(b) slope	(c) secants	(d) false					
9.	In Euler's method, if h		CO5- R						
	(a) fast	(b)slow	(c)average	(d) None o	(d) None of these				
10.	The Fourth order RungeKutta methods are used widely in CO5- I solution to differential equations								
	(a) abstract (b) graphical (c) numerical				(d) None of these				
	PART – B (3 x 8= 24 Marks)								
	(Answer any three of the following questions)								
11.	Find the moment gene	CO1- App	(8)						
	hence find it's mean and variance.								
12.	Customers arrive at one man barber shop according to a Poisson CO2- App (8) process with a mean interarrival time of 12 minutes; Customers spend an average of 10 minutes in the barber's chair.								
	a) What is the probability that the barber shop is empty?								
	b) What is the expected number of customers in the barber shop and in the queue?								

- c) Find the average time a customer spends in the barbershop.
- 13. By using the method of moments, obtain a straight line fit to the CO3- Ana (8) following data::

Х	1	2	3	4
Y	0.30	0.64	1.32	5.40

- 14. Solve for a positive root of $3x \cos x 1 = 0$ by Newton's Raphson CO4- App (8) method.
- 15. Using Taylor series method find y(0.1) for $\frac{dy}{dx} = x^2 y 1$ with y(0) = 1. (8)