		Reg. No. :											
		Question Pa	per	Coc	le: 9	9100)2						
B.E./B.Tech. DEGREE EXAMINATION, DEC 2020													
First Semester													
		Civil E	ngine	eerin	g								
	1	9UMA102- ENGINE	ERIN	G M	ATH	EM	ATIC	CS I					
		nche	s)										
Dur	ration: 1.15 hrs	(Regula	(Regulation 2019)				Maximum: 20 Marks						
Dui	auon. 1.15 ms	PART A - (6	PART A - $(6 \times 1 = 6 \text{ Marks})$										
		(Answer any six of t	the fo	ollow	ing o	iues	tions)					
1.	The product of the $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is	Eigen values of				-		, ,				CO1- R	
	(a) abcd	(b) <i>ad</i> – <i>bc</i>	(c) a					(d) 0			
2.	The equation $ A - \lambda I = 0$ is called the			_ of	the n	natri	x A.					CO1- R	
	(a) Characteristic equation			(b) Characteristic polynomial									
	(c) Eigen value			(d) None of the abov									
3.	The n th derivative of	oted l	ed by								CO2- R		
	(a) $(y_n)_a$	(b) (y_n)	(c) y _a					(d) (y	$(a)^n$		
4.	$\frac{d}{dx}\left(\frac{u}{v}\right) =$											CO2- R	
	(a) $\frac{v\frac{du}{dx}-u\frac{dv}{dx}}{v^2}$	(b) $\frac{v\frac{du}{dx}+u\frac{dv}{dx}}{v^2}$	((c) $\frac{v\frac{du}{dx}/u\frac{dv}{dx}}{v^2}$					(d) $\frac{v_{d}}{d}$	$\frac{u}{lx} - u\frac{d}{dx}$ v	$\frac{lv}{lx}$	
5.	The degree of the homogeneous function											CO3- R	
	$u = \frac{x^2 + y^2}{\sqrt{x} + \sqrt{y}}$ is (a) 2	(b)1	()	c) 3/2	2				(d) 0			
		x - 7	(,					(, -			

6. A point at which f(x, y) has neither maximum nor minimum is called CO3- R (a) Saddle point (b) Stationary point (c) Maximum point (d) Minimum point 7. $\int (ax+b)^n \, dx$ CO4- R (a) $\frac{(ax+b)^{n+1}}{a(n+1)}$ (b) $\frac{(ax+b)^{n-1}}{a(n-1)}$ (c) $(ax+b)^n$ (d) $\frac{(ax+b)^n}{an}$ 8. $\int \sin^2 x \, dx =$ CO4- R (a) $\frac{x}{2} - \frac{\sin 2x}{4}$ (b) $\cos^2 x$ (c) $x - \frac{\cos 2x}{2}$ (d) $\frac{x}{2} - \frac{\cos 2x}{4}$ The value of $\int_2^4 \int_1^2 \frac{dxdy}{xy}$ is _____ CO5- R 9. (b) $\log 2/\log 2$ (a) $\log 2$ (c) 2log 2 (d) 210. Change the order of integration in $\int_0^\infty \int_x^\infty f(x, y) dxdy$ is_____ CO5- R (b) $\int_0^\infty \int_0^\infty f(x, y) dx dy$ (a) $\int_0^\infty \int_x^\infty f(x, y) dxdy$ (c) $\int_0^\infty \int_0^x f(x, y) dxdy$ (d) None of the above PART - B (3 x 8 = 24 Marks) (Answer any three of the following questions) 11. Use orthogonal transformation to reduce the quadratic form into CO1- App (8)canonical form $0 = 2x_1^2 + x_2^2 + x_3^2 + 2x_1x_2 - 2x_1x_3 - 4x_3x_2$ 12. Find the nth derivative of CO2- App (8) $\frac{1}{r^2 \pm a^2}$ 13. The temperature u(x, y, z) at any point in space is CO3-Ana (8) $u = 400xyz^2$. Find the highest temperature on surface of the sphere

$$x^2 + y^2 + z^2 = 1.$$

- 14. Find the relation between Beta and Gamma function.CO4- App(8)
- 15. Find the volume of the ellipsoid CO5- App (8) $r^2 = v^2 = r^2$
 - $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ using integration.