		Reg. No. :											
		Question Pap	er (Code	e: 52	2004	4						
B.E. / B.Tech. DEGREE EXAMINATION, DEC 2020													
Second Semester													
Electrical and Electronics Engineering													
15UPH204 – SOLID STATE PHYSICS													
(Common to EIE and Biomedical Engineering)													
(Regulation 2015)													
Duration: 1:15 hrs Maximum: 30 Marks							.s						
PART A - $(6 \times 1 = 6 \text{ Marks})$													
(Answer any six of the following questions)													
1.	The average velocity acquired by the free electron of a metal in a CO1- F particular direction during the application of electric field is called												
	(a) terminal velocity	(b) drift velocity	(c) es	cape	velo	city	(d	l) crit	tical	velo	city	
2.	The magnitude of Lor	entz number is										CO1-]	
	(a) 2.44 X 10 ⁻⁸		(b) 2.	44 X	(10 ⁻⁸	WS	2 K					
	(c) 2.44 X 10^{-8} W Ω K ⁻²			(d) 2.44 X 10^{-6} W Ω K ⁻²									
3.	Silicon is	valent element.										CO2- F	
	(a) penta	(b) hexa	(c) tri					(d) te	tra		
4.	P – type semiconductor is formed by adding impurity CO2- R in a pure germanium crystal.												
	(a) divalent	(b) trivalent	(c) te	trava	lent			(d) pe	entav	alent	
5.	Diamagnetic material	possess										CO3-]	
	(a) no induced dipoles even when external field is applied												
	(b) induced dipoles along field direction												
	(c) permanent magnet	ic dipoles											

(d) absence of permanent magnetic dipoles

6.	Below transition temperature a super conduc	С	O3- R								
	(a) zero resistance	(b) zero resistance and diamagnetism									
	(c) zero resistance and paramagnetism	omagnetism									
7.	The unit for permittivity of free space is		С	O4- R							
	(a) dimensionless (b) H / m	(c) m / H	(d) tesla								
8.	The main constituents of ceramics are		С	O4- R							
	(a) silicon only	(b) non –metallic solids only									
	(c) silicon - non metallic solids	(d) silicon and ferrous allog	oys								
9.	In nanomaterials with decrease of size the inter atomic spacing CO5-										
	(a) decreases	(b) increases									
	(c) first increases and then decreases	est increases and then decreases (d) remains unchanged									
10.	The following is an example for bottom-up fabrication of nanoparticles										
	(a) sol-gel method (b) ball milling	(c) nanolithography (d)	photolithography								
	PART – B (3 x 8= 24 Marks)										
	(Answer any three of the following questions)										
11.	Based on the postulates of classical free ele mathematical expression for electrical condu	CO1- U	(8)								
12.	Mathematically show that for an intrinsic level is located exactly at the mid-point of th	CO2 U	(8)								
13.	Distinguish between para and ferromagnetic	CO3- Ana	(8)								
14.	Compute the internal field for a cubic crystal	CO4- U	(8)								
15.	Explain the fabrication of nanoparticles by p deposition techniques.	CO5- U	(8)								