		Reg. No. :										
Question Paper Code: 51005												
B.E. / B.Tech. DEGREE EXAMINATION, DEC 2020												
First Semester												
Computer Science and Engineering												
15UCY105 - APPLIED CHEMISTRY												
(Common to EEE, ECE, EIE, IT and Biomedical Engineering)												
(Regulation 2015)												
Duration: One hour Maximum: 30 Marks												
PART A - (6 x 1 = 6 Marks)												
(Answer any six of the following questions)												
1.	Arrange the covalent bond configurations sp^3-sp^3 , sp^2-sp^2 and $sp-sp$ in CO1- increasing order of strength.								CO1-			
	(a) $sp^3-sp^3 < sp-sp <$	(b)	(b) $sp^2 - sp^2 < sp^3 - sp^3 < sp - sp$									
	(c) $sp^3-sp^3 < sp^2-sp^2 < sp-sp$			(d) $sp-sp < sp^2 - sp^2 < sp^3 - sp^3$								
2.	The bond order in oxy									CO1-		
	(a) 1	(b) 2	(c) 3	3				((d) 4			
3.	Dry corrosion is a pro	netals	als								CO2-	
	(a) Indirectly	(b) Directly	(c) (Oppos	sitely			((d) Reversibly			7
4.	Using the data given below find out the strongest reducing agent.										CO2-	
	$E^{-}Cr_{2}O_{7}^{2-}/Cr^{3+} = 1.33V, E^{-}Cr^{3+}/Cr = -0.74V, E^{-}Cl_{2}/Cl^{-} = 1.36V, E^{-}MnO_{4}^{-}/Mn^{2+} = 1.51V.$											
	(a) Cl ⁻	(b) Cr	(c) (Cr^{3+}				((d) N	In ²⁺		
5.	Primary batteries are	examples of										CO3-
(a) Reversible cells (b) Fuel cells (c) Sensors					((d) Irreversible cells						
6.	5. In ion – selective electrodes the change in p^{H} is sensed by							CO3-				
	(a) pellet electrode	(b) re	(b) reference electrode									
	(c) glass membrane		(d) gl	lass el	ectro	ode						

7.	What is the range of visible region?									
	(a) 200-400 nm	(b) 400-1000 nm	(c) 400-850	nm	(d) 400-750 i	nm				
8.	Which of the following transitions is the highest energy transition?									
	(a) n to σ^*	(b) n to π^*	(c) σ to σ^*	(c) σ to σ^*						
9.	The number of boding sites in a monomer is referred to as its									
	(a) functionality (b) tacticity (c) Co-polymers (d) degree of polymerisat									
10.	The fibre which is made from acrylonitrile as monomer									
	(a) Rayon	(b) Acrylic fibre	(c) Nylon		(d) PVC					
	PART – B (3 x 8= 24 Marks)									
(Answer any three of the following questions)										
11.	What do you mean by hybridization? Explain with diagram the formation CO1- U									
	of Oxygen (O ₂) and Hydrogen (H ₂) using molecular orbital theory.									
12.	Describe in detail the measurement of single electrode potentially CO2-U									
13.	Poggendroff's metho Explain H_2 - O_2 fuel ce	CO3- U	(8)							
14	-			vsis	CO4- U	(8)				
15.	Summarize the working principles of thermo gravimetric analysisCO4- UDiscuss the methods available in chemical and electrochemical doping ofCO5- U									
	conducting polymer in					(8)				