Reg No ·	
----------	--

Question Paper Code: 45021

B.E. / B.Tech. DEGREE EXAMINATION, DEC 2020

Fifth Semester

Computer Science and Engineering

14UMA521 - DISCRETE MATHEMATICS

(Regulation 2014)

(Common to IT Branch)

Duration: 1.15 hrs

Maximum: 30 Marks

PART A - $(6 \times 1 = 6 \text{ Marks})$

(Answer any six of the following questions)

1.	Let $P(x): x < 32$ and $Q(x): x$ is a multiple of 10 with universe of discourse as all positive integers. Then the truth value of $(\exists x)(P(x) \rightarrow Q(x))$ is				
	(a) True	(b) False	(c) 10	(d) 20	
2.	$P \rightarrow Q$ is equivalent to				
	(a) $\exists Q \rightarrow P$	(b) $Q \rightarrow P$	(c) $P \to \neg Q$	$(\mathbf{d}) \;] \; Q \to] \; P$	
3.	arranged in such a				
	(a) 620	(b) 710	(c) 720	(d) 610	
4.	The numbers of ways in which 6 boys and 4 girls be arranged in a straight line so that no two girls are together is				
	(a) 10^{P_6}	(b) 604800	(c) 720	(d) 17280	

- 5. A vertex of degree one is called
 - (a) Isolated vertex (b) Unit vertex (c) Pendant vertex (d) Proper vertex

6. The number of vertices in a regular graph of degree 4 with 10 edges is

(a) 4 (b) 10 (c) 6 (d) 5

- 7. A ring with identity (R, +, .) is a field if
 - (a) (R, +) is commutative
 - (b) Every non-zero element has a multiplicative inverse
 - (c) Both (a) and (b)
 - (d) Only (b) not (c)
- 8. The necessary and sufficient condition for a non-empty subset *H* of a group *G* to be a subgroup when $a, b \in H$ is
 - (a) $a^{-1} * h * a \in H$ (b) $a^{-1} * b \in H$ (c) $a^{-1} * b^{-1} \in H$ (d) $(a * b)^{-1} \in H$
- 9. The value of (a, b)' + (a + b)' is (a) $a' \cdot b'$ (b) a' + b' (c) 0 (d) 1
- 10. The value of (a.b)' + (a + b)' is(a) a'.b'(b) a' + b'(c) 0(d) 1

PART - B (3 x 8= 24 Marks)

(Answer any three of the following questions)

- 11. Obtain the principal disjunctive and principal conjunctive normal forms of $(P \rightarrow (Q \land R)) \land (\sim P \rightarrow (\sim Q \land \sim R)).$ (8)
- 12. Solve the recurrence relation $y_{n+2} 6y_{n+1} + 9y_n = 0$, $y_1 = 4$ and $y_0 = 1$. (8)
- 13. Find the adjacency matrix of the following graph *G*.

Find A^2 , A^3 and $Y = A + A^2 + A^3 + A^4$. What is your observation of entries in A^2 and A^3 ? (8)

- 14. Let * be defined on *R* by $x * y = x + y + 2xy \forall x, y \in R$. Check whether (*R*,*) is a monoid (or) not. Is it commutative? Also find the inverses of (*R*,*). (8)
- 15. Prove that De Morgan's laws hold good for a complemented distributive lattice. (8)