

Question Paper Code: 41002

B.E. / B.Tech. DEGREE EXAMINATION, DEC 2020

First Semester

Civil Engineering

14UMA102 - ENGINEERING MATHEMATICS - I

(Common to ALL branches)

(Regulation 2014)

Duration: Three hours Maximum: 100 Marks

PART A -
$$(6 \times 1 = 6 \text{ Marks})$$

(Answer any six of the following questions)

1.	Iİ	1 and 2 are the eigen	values of 2x2 matrix	A. what are the eige	en values of A
		(a) 1 & 2	(b) 1 & 4	(c) 2 & 4	(d) 2 & 3
2.	$\begin{vmatrix} 1 \\ 0 \end{vmatrix}$	$\begin{vmatrix} 2 \\ 2 \end{vmatrix} =$			
		(a) 0	(b) 1	(c) 2	(d) 3

- 3. Examine the nature of the series $1 + 2 + 3 + 4 + \dots + n + \dots \infty$ (a) divergent (b) convergent (c) oscillatory (d) linear
- 4. The geometric series $1 + r + r^2 + r^3 + \dots + r^n + \dots$ converges if

 (a) $r \le 1$ (b) $r \ge 1$ (c) r > 1 (d) r < 1
- 5. What is the radius of curvature at (3, 4) on the curve $x^2 + y^2 = 25$?

 (a) 5 (b) -5 (c) 25 (d) -25
- 6. The envelope of the family of straight lines $y = mx + \frac{1}{m}$, m being the parameter is

 (a) $y^2 = -4x$ (b) $x^2 = 4y$ (c) $y^2 = 4x$ (d) $x^2 = -4y$

7.	Let <i>u</i> and <i>v</i> be functions of <i>x</i> , <i>y</i> and $u = e^v$. Then <i>u</i> and <i>v</i> are							
		(b) Functionally independent(d) Functionally non-linear						
8.	a minimum is							
	(c) Saddle point	(b) Max-Min point(d) Nothing can be said						
9.	$\iint_{0}^{1} \iint_{0}^{2} xyz dx dy dz$							
	(a) 9	(b) $\frac{9}{4}$		(c) $\frac{9}{2}$	(d) $\frac{1}{9}$			
10. By changing the order of integration, we get $\iint_{0}^{1} f(x,y) dx dy =$ $(a) \iint_{0}^{1} f(x,y) dy dx \qquad (b) \iint_{0}^{1} f(x,y) dy dx \qquad (c) \iint_{0}^{1} f(x,y) dx dy \qquad (d)$								
	(a) $\iint_{0}^{\infty} f(x, y) dy dx$	$(b) \prod_{0 \ x} f$	(x,y)dydx	$(C) \iint_{0} f(x, y) dx dy$	(d) $\iint_{0}^{\infty} f(x, y) dy dx$			
		PART	– B (3 x 8= 24 M	(larks)				
	(Answer	any th	ree of the follow	ving questions)				
11.	Diagonalize the matrix by o	orthogor	nal transformatio	$ \mathbf{n} \begin{bmatrix} 10 & -2 & -5 \\ -2 & 2 & 3 \\ -5 & 3 & 5 \end{bmatrix}. $	(8)			
12.	Show that the sum of the series $\frac{15}{16} + \frac{15}{16} \times \frac{21}{24} + \frac{15}{16} \times \frac{21}{24} \times \frac{27}{32} + \dots = \frac{47}{9}$.							
13.	3. Find the radius of curvature at any point of the cycloid $x = a(\theta + \sin \theta)$ and $y = a(1 - \cos \theta)$.							
14.	Find the Taylor's series of a terms.	$e^x \log(1$	+ y) in powers o	of x and y up to third	d degree (8)			
15.	Change the order of integrat	ion and	evaluate $\int_0^1 \int_{x^2}^{2-x}$	$^{x}xy dy dx$.	(8)			