Reg. No. :	
------------	--

Question Paper Code: 34024

B.E. / B.Tech. DEGREE EXAMINATION, DEC 2020

Fourth Semester

Electronics and Communication Engineering

01UMA424 - PROBABILITY AND RANDOM PROCESSES

(Regulation 2013)

Duration: One hour

Maximum: 30 Marks

PART A - $(6 \times 1 = 6 \text{ Marks})$

(Answer any six of the following questions)

1.	The probability of impossible event is				
	(a) 1	(b) 0	(c) 2	(d) 0.5	
2.	In which probability distribution, Variance and Mean are equal?				
	(a) Binomial	(b) Poisson	(c) Geometric	(d) None of these	
3.	. If two random variables X and Y are independent, then covariance is				
	(a) θ	(b) 1	(c) 0	(d) λ	
4.	If $X = Y$ then correlation coefficient between them is				
	(a) <i>0</i>	(b) ∞	(c) <i>1</i>	(d) ±1	
5.	Every Strongly stationa	ry process of order 2	is a		
	(a) Orthogonal process		(b) Stationary Process		
	(c) WSS Process		(d) None of the	hese	
6.	If both T and S are discrete, then the random process is called				
	(a) stationary	(a) stationary (b) discrete random sequence			
	(c) random process		(d) Poisson pr	rocess	

7.	Autocorrelation function is an	function.			
	(a) odd	(b) even			
	(c) neither Even nor odd	(d) stationary			
8.	If $R_{xy}(\tau) = \mu_X \times \mu_Y$ then $X(t)$ and $Y(t)$ are called				
	(a) Independent	(b) Orthogonal			
	(c) Stationary	(d) none of these			
9.	Which of the following system is C	ausal?			
	(a) $y(t) = x(t+a)$	(b) $y(t) = x(t-a)$			
	(c) $(t) = a x(t+a)$	(d) $y(t) = x(t) - x(t-a)$			
10					

10. Colouted Noise means a noise that is

(a) white	(b) not white		
(c) coloured	(d) none of these		

PART - B (3 x 8= 24 Marks)

(Answer any three of the following questions)

11. A random variable *X* has the following probability distribution:

x	0	1	2	3	4	5	6	7
P(x)	0	k	2k	3k	3k	<i>k</i> ²	2 <i>k</i> ²	$7k^2 + k$

Find (i) the value of k, (ii) P(1.5 < X < 4.5 / X > 2) and (iii) the smallest value of λ for which $P(X \le \lambda) > \frac{1}{2}$. (8)

- 12. *X* is a normal random variable with mean 1 and variance 4. Find the density function of Y where $Y = 2X^2 + 1$. (8)
- 13. Discuss the stationarity of the random process $X(t) = A\cos(\omega_0 t + \theta)$ if A and ω_0 are constants and θ is uniformly distributed random variable in $(0, 2\pi)$. (8)
- 14. State and Prove Wiener-Khintchine theorem, and hence find the power Spectral density of a WSS process X(t) which has an autocorrelation

$$R_{xx}(\tau) = A_0 \left[1 - \frac{|\tau|}{\tau} \right], \quad -T \le \tau \le T.$$
(8)

15. Given the power spectral density of the continuous process, $\frac{\omega^2 + 2}{\omega^4 + 13\omega^2 + 36}$. Find the mean square value of the process. (8)