	Reg. No.	:									
	Question Paper	r Coo	le: í	3402	22	l			1		
	B.E. / B.Tech. DEGREE EXAMINATION, DEC 2020										
	Fourth	n Seme	ester								
	Civil E	Engine	ering	5							
01UMA422 - NUMERICAL METHODS											
(Common to EEE, EIE and ICE)											
	(Regul	ation 2	2013))							
Dı	uration: One hour					Max	kimuı	n: 30) Ma	rks	
	PART A - $(6 \times 1 = 6 \text{ Marks})$										
	(Answer any six of	the fol	lowi	ng qı	ıesti	ons)					
1.	Suppose a root of $f(x) = 0$ lies between	een 'a	' an	d ' <i>b</i> '	. Th	en b	y th	e m	ethoc	d of	false
	position, its first approximation x_1 is										
	(a) $\frac{af(b)-bf(a)}{f(a)-f(b)}$	(t	$(a) \frac{af}{f}$	f(a)-b	$\frac{f(b)}{(b)}$						
	(c) $\frac{af(b)-bf(a)}{f(b)-f(a)}$	(0	d) $\frac{af}{f}$	f(a)-b	$\frac{f(b)}{(a)}$						
2.	The order of convergence of method of f	alse po	sitic	on is							
	(a) 1.618 (b) 1.816	(0	e) 1.	168			((d) 1	1.186	I	
3. In Gauss Seidel method, diagonally dominant condition of coefficient matri							natri	x is			
	(a) necessary and sufficient	(ł	(b) necessary but not sufficient								
	(c) sufficient but not necessary	(0	d) ne	either	nece	ssar	y nor	suff	icien	ıt	
4.	Power method is not applicable to the ma	atrix w	hose	Eige	n ve	ctors	are				
	(a) Linearly independent			inearl							

5. If $(x) = \frac{1}{x^2}$, then the divided difference f(a, b) is

(a) $\frac{a+b}{a^2b^2}$

(c) Distinct

(b) $\frac{a-b}{a^2b^2}$ (c) $-\frac{a-b}{a^2b^2}$

(d) Not all non-zero

(d) $-\frac{a+b}{a^2b^2}$

6.	I If $=\frac{x-x_0}{h}$, then the e	error in Nev	wton's	forware	d interp	olation	formula	ı is	
	(a) $\frac{u(u-1)(u-n)}{(n)!}$				b) $\frac{u(u-1)}{(u-1)^n}$				
	(c) $\frac{u(u-1)(u-n)}{(n+1)!}$				d) $\frac{u(u-1)}{(u-1)}$	–).			
7.	Condition for maxima	point for t	he fun	ction is					
	(a) $y' = 0, y'' < 0$	0 (b) $y' =$	= 0, y"	> 0	(c)	y' < 0	y''=0	(d) y'	> 0, y'' < 0
8.	Simpson's 3/8 th rule is	s used only	when	the nur	nber of	sub-inte	ervals is	S	
	(a) odd				nultiple	of 3			
	(c) for all natural	numbers		(d) e	ven				
9.	The method of group	averages is	based	on the	assump	tion tha	t the su	m of the 1	residuals is
	(a) 0	(b) 1		(c) 2			(d) 3	
10.	If $y = 2x + 5$ is the b $\sum Y = 120$, the $\sum X =$		8 pairs	of valu	es (<i>x</i> , <i>y</i>)by the	metho	d of least	squares and
	(a) 35	(b) 40		(c) 45			(d) 30	
		PAR	RT – B	(3 x 8=	24 Ma	rks)			
	(A)	nswer any	three	of the f	ollowin	ng ques	tions)		
11.	Find the positive	real root o	f 3 <i>x</i> –	cosx -	- 1 = 0	using N	lewton-	-Rapshon	
	method.								(8)
12.	Solve the following	ng system o	of equa	tion us	ing Gau	ıssian el	iminati	on metho	d.
	28x + 4y - z = 1	32, $x + 3$	y + 10	z = 24	2x + 1	17y + 4	4z = 35	5.	(8)
13.	Using Newton's	backward f	ormula	a find f	(7.5) fro	om the f	followin	ng table:	(8)
	X = 1	2	3	4	5	6	7	8	· /
	f(x) 1	8	27	64	125	216	343	512	
	<u> </u>	I I		ı	I	I			
1/1	Find the first two	derivative	of w	$-(r)^{1}$	/3 at r -	- 50 & v	· – 56 a	ivan tha t	ahle

14. Find the first two derivatives of $y = (x)^{1/3}$ at x = 50 & x = 56 given the table below.

x :	50	51	52	53	54	55	56
y :	3.6840	3.7084	3.7325	3.7563	3.7798	3.8030	3.8259

(8)

15. Find the equation of the best fitting straight line to the following data by method of group averages: (8)

х	0	5	10	15	20	25	30
у	10	14	19	25	31	36	39