Reg. No. :						
------------	--	--	--	--	--	--

Question Paper Code: 52002

B.E. / B.Tech. DEGREE EXAMINATION, DEC 2020.

Second Semester

Civil Engineering

01UMA202 - ENGINEERING MATHEMATICS - II

(Common to all branches)

(Regulation 2013)

Duration: One hour

Maximum: 30 Marks

PART A - $(6 \times 1 = 6 \text{ Marks})$

(Answer any six of the following questions)

- 1. The complete solution of $(D^3 D)y = 0$ is (a) $y = A + Bx + Cx^2$ (b) y = A + Bcosx + Csinx(c) $y = A + Be^x + Ce^{-x}$ (d) $y = Ax + Be^{-x} + Ce^x$
- 2. The roots of $(D^2+2)y$ are

(a)
$$\pm 2$$
 (b) $\pm 2i$ (c) $\pm i\sqrt{2}$ (d) $\sqrt{2}$

- 3. If $\vec{r} = x\vec{\iota} + y\vec{j} + z\vec{k}$, the value of ∇r is
 - (a) $\frac{\overrightarrow{r}}{r}$ (b) $\frac{r}{\overrightarrow{r}}$ (c) $\frac{1}{r}$ (d) $\frac{1}{\overrightarrow{r}}$
- 4. By stokes theorem, $\int_{c} \vec{r} \, d\vec{r} =$ _____ (a) π (b) 1 (c) 0 (d) None of these
- 5. The derivative of f(z) at z_0 is
 - (a) l (b) f(z) (c) $f(z_0)$ (d) $f'(z_0)$

6. The bilinear transformation that maps the points ∞ , i, 0 onto 0, i, ∞ is

(a)
$$-\frac{1}{z}$$
 (b) $-\frac{i}{z}$ (c) $\frac{i}{z}$ (d) None of these
7. Which of the following is not an analytic function?
(a) $\sin z$ (b) z (c) $\sinh z$ (d) \overline{z}
8. Conformal mapping is a mapping which preserves angle
(a) in magnitude (b) in sense
(c) both in magnitude and sense (d) Eithen in magnitude or in sense
9. $L^{-1}\left[\frac{1}{s^2 + a^2}\right] =$
(a) $\frac{\sinh at}{a}$ (b) $\frac{\sin at}{a}$ (c) $\sinh at$ (d) $\sin at$
10. Laplace transforms is an _____ transform.

(a) Discrete(b) Discrete time(c) Data independent(d) Integral

bounded by the planes x = 0, x = 1, y = 0, y = 1, z = 0, z = 1.

PART – B (3 x 8= 24 Marks)

(Answer any three of the following questions)

11. Solve
$$(D^2 - 4D + 3)y = sin3x cos2x$$
. (8)
12. Verify Gauss divergence theorem for $\vec{F} = 4xz\vec{\imath} - y^2\vec{\jmath} + yz\vec{k}$ taken over the cube

13. Find the bilinear mapping which maps the points
$$Z = 0, -1, 1$$
 of the Z-plane onto $W = i, 0, \infty$ of the W-plane. (8)

14. Find the value of
$$\int_0^{\pi} \frac{1+2\cos\theta}{5+4\cos\theta} d\theta$$
 using contour integration. (8)

15. Find the Laplace transform of a periodic function

$$f(t) = \begin{cases} t & 0 < t < 1\\ 2 - t & 1 < t < 2 \end{cases} \text{ and } f(t) = f(t+2).$$
(8)

52002

(8)