Dog No.					
Reg. No.:					
0					

Question Paper Code: 51002

B.E. / B.Tech. DEGREE EXAMINATION, DEC 2020

First Semester

Civil Engineering

01UMA102 - ENGINEERING MATHEMATICS - I

(Common to ALL branches)

(Regulation 2013)

Duration: 1.15 hrs Maximum: 30 Marks

PART A - $(6 \times 1 = 6 \text{ Marks})$

(Answer any six of the following questions)

1.	If I and 2 are the e	igen values of 2x2 m	iatrix A. what are t	the eigen values of A
	(a) 1 & 2	(b) 1 & 4	(c) 2 & 4	(d) 2 & 3
2.	$\begin{vmatrix} 1 & 2 \\ 0 & 2 \end{vmatrix} =$			
	(a) 0	(b) 1	(c) 2	(d) 3
3.	Examine the nature	of the series $1 + 2 +$	- 3 + 4 ++	η +∞

4. The geometric series $1 + r + r^2 + r^3 + \dots + r^n + \dots$ converges if

(a) divergent

(a) $r \le 1$ (b) $r \ge 1$ (c) r > 1 (d) r < 1

(b) convergent (c) oscillatory (d) linear

- 5. What is the radius of curvature at (3, 4) on the curve $x^2 + y^2 = 25$?

 (a) 5 (b) -5 (c) 25 (d) -25
- 6. The envelope of the family of straight lines $y = mx + \frac{1}{m}$, m being the parameter is

 (a) $y^2 = -4x$ (b) $x^2 = 4y$ (c) $y^2 = 4x$ (d) $x^2 = -4y$

- 7. Let u and v be functions of x, y and $u=e^{v}$. Then u and v are (a) Functionally dependent (b) Functionally independent (c) Functionally linear (d) Functionally non-linear
- A stationary point of f(x, y) at which f(x, y) has neither a maximum nor a minimum is called
 - (a) Extreme point (b) Max-Min point (d) Nothing can be said (c) Saddle point
- 9. $\iint_{0}^{1} \iint_{0}^{2} xyz dx dy dz$ (b) $\frac{9}{4}$ (c) $\frac{9}{2}$ (d) $\frac{1}{9}$ (a) 9
- 10. By changing the order of integration, we get $\int_{0}^{1} \int_{0}^{y} f(x, y) dx dy =$ (a) $\iint_{0}^{1} f(x, y) dy dx$ (b) $\iint_{0}^{1} f(x, y) dy dx$ (c) $\iint_{0}^{1} f(x, y) dx dy$ (d) $\iint_{0}^{1} f(x, y) dy dx$

$$PART - B$$
 (3 x 8= 24 Marks)

(Answer any three of the following questions)

- Find the Eigen values and Eigenvectors of the matrix $A = \begin{pmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{pmatrix}$. 11. (8)
- Find the center, radius and area of the circle $x^2+y^2+z^2-2x-4y-6z-2=0$, 12. x+2y+2z=20.(8)
- Find the radius of curvature at the point $\left(\frac{3a}{2}, \frac{3a}{2}\right)$ on the curve $x^3 + y^3 = 3axy$. 13. (8)
- If u = 2xy, $\theta = x^2 y^2$ where if $x = r \cos \theta$, $y = r \sin \theta$ find $\frac{\partial (u, \theta)}{\partial (r, \theta)}$. 14. (8)
- Change the order of the integration and hence evaluate $\int_0^1 \int_{y^2}^{2-x} xy \ dxdy$. 15. (8)