Reg. No. :										
------------	--	--	--	--	--	--	--	--	--	--

Question Paper Code: 46101

B.E. / B.Tech. DEGREE EXAMINATION, DEC 2020

Sixth Semester

Civil Engineering

14UCE601 - DESIGN OF STEEL AND TIMBER STRUCTURES

(Regulation 2014)

(Use of IS 800:2007, IS 875 (part I, II & III) : 1987, SP 6-1964 and IS 883:1994 are permitted)

Duration: One hour

Maximum: 30 Marks

PART A - $(6 \times 1 = 6 \text{ Marks})$

(Answer any six of the following questions)

1. A fillet weld may be termed as

(a) miter weld	(b) concave weld
(c) convex weld	(d) none of these

- 2. If d is the distance between the flange angles, the vertical stiffeners in plate girders are spaced not greater than
 - (a) d (b) 1.25 d (c) 1.5 d (d) 1.75 d
- 3. If the unsupported length of a stanchion is 4 meter and least radius of gyration of its cross-section is 5, the slenderness ratio of the stanchion, is
 - (a) 60 (b) 70 (c) 80 (d) 90
- 4. The main assumption of the method of simple design of steel frame work, is
 - (a) beams are simply supported
 - (b) all connections of beams, girders and trusses are virtually flexible
 - (c) members in compression are subjected to forces applied at appropriate eccentricities
 - (d) all the above

5.	A compression member consisting of angle sections may be a								
	(a) continuous member(c) discontinuous double angle strut		(b) (d)	discontinuous none of these	single	angle	strut		
6.	The Indian standard code w	ctures, is							
	(a) IS : 875	(b) IS : 800		(c) IS : 456	(0	d) IS : 1	893		
7.	. The minimum pitch of rivet holes of diameter d should not be less than								
	(a) <i>d</i>	(b) 2.5 <i>d</i>		(c) 1.5 <i>d</i>	(0	d) 2 <i>d</i>			
8.	The strength of a riveted lap	joint is equal to its							
	(a) shearing strength(c) tearing strength			(b) bearing strength					
				(d) least of (a), (b) and (c)					
9.	The timber to be used in structure must conform to the standards specified in								
	(a) BIS 3626-1969			(b) IS 883-1994	Ļ				
	(c) IS 3629-1986			(d) BIS 3620-19	980				
10.	Web crippling generally occ	curs at							
	(a) flanges of the beem			(b) root of the r	adina				

(a) flanges of the beam	(b) root of the radius
(c) mid span of the beam	(d) mid depth of the web

PART – B (3 x 8= 24 Marks)

(Answer any three of the following questions)

11. Design a lap joint between the two plates each of width 120mm, if the thickness of one plate is 16mm and the other is 12mm. The joint has to transfer a design load of 160kN. The plates are of Fe410 grade. Use bearing type bolts. (8)

12. Determine the design tensile strength of the plate 200 mm x 12 mm with the holes for 16 mm diameter bolts as shown in figure. Steel used is of Fe415 grade quality.

- 13. Calculate the strength of a discontinuous strut of length 3.2*m*. The strut consist of two unequal angles ISA 100x75x8 *mm* ($f_y = 250$ N/mm²), with long legs connected and placed,
 - (i) On the opposite sides of Gusset plate
 - (ii) On the same side of the Gusset plate. (8)
- 14. Design a welded plate girder using Fe 415 steel for a span of 25 m to carry a load of 30 kN/m. (8)
- 15. A column has to carry a load of 600 *kN*. Its effective height is 4.0 *m*. Design a built up solid wood column of deodar. (8)

(8)